Given the vector function r ( t ) = ( 2 e 3 t 2 e − 3 t 3 t e 3 t ) r(t) = \begin{pmatrix} 2e^{3t} \\ 2e^{-3t} \\ 3te^{3t} \end{pmatrix} r ( t ) = 2 e 3 t 2 e − 3 t 3 t e 3 t , we need to find T ( 0 ) T(0) T ( 0 ) , r ′ ′ ( 0 ) r''(0) r ′′ ( 0 ) , and r ′ ( t ) ⋅ r ′ ′ ( t ) r'(t) \cdot r''(t) r ′ ( t ) ⋅ r ′′ ( t ) .
1. Finding T ( 0 ) T(0) T ( 0 )
T ( t ) T(t) T ( t ) represents the unit tangent vector at time t t t , defined as:
T ( t ) = r ′ ( t ) ∣ r ′ ( t ) ∣ T(t) = \frac{r'(t)}{|r'(t)|} T ( t ) = ∣ r ′ ( t ) ∣ r ′ ( t )
To find T ( 0 ) T(0) T ( 0 ) , we first need to compute r ′ ( t ) r'(t) r ′ ( t ) and then evaluate it at t = 0 t = 0 t = 0 .
1.1 Compute r ′ ( t ) r'(t) r ′ ( t )
r ( t ) r(t) r ( t ) is given as:
r ( t ) = ( 2 e 3 t 2 e − 3 t 3 t e 3 t ) r(t) = \begin{pmatrix} 2e^{3t} \\ 2e^{-3t} \\ 3te^{3t} \end{pmatrix} r ( t ) = 2 e 3 t 2 e − 3 t 3 t e 3 t
Differentiate each component with respect to t t t :
r ′ ( t ) = ( 6 e 3 t − 6 e − 3 t 3 e 3 t + 9 t e 3 t ) r'(t) = \begin{pmatrix} 6e^{3t} \\ -6e^{-3t} \\ 3e^{3t} + 9te^{3t} \end{pmatrix} r ′ ( t ) = 6 e 3 t − 6 e − 3 t 3 e 3 t + 9 t e 3 t
Now, evaluate r ′ ( t ) r'(t) r ′ ( t ) at t = 0 t = 0 t = 0 :
r ′ ( 0 ) = ( 6 e 0 − 6 e 0 3 e 0 + 9 ⋅ 0 ⋅ e 0 ) = ( 6 − 6 3 ) r'(0) = \begin{pmatrix} 6e^{0} \\ -6e^{0} \\ 3e^{0} + 9 \cdot 0 \cdot e^{0} \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \\ 3 \end{pmatrix} r ′ ( 0 ) = 6 e 0 − 6 e 0 3 e 0 + 9 ⋅ 0 ⋅ e 0 = 6 − 6 3
1.2 Compute ∣ r ′ ( 0 ) ∣ |r'(0)| ∣ r ′ ( 0 ) ∣
∣ r ′ ( 0 ) ∣ = 6 2 + ( − 6 ) 2 + 3 2 = 36 + 36 + 9 = 81 = 9 |r'(0)| = \sqrt{6^2 + (-6)^2 + 3^2} = \sqrt{36 + 36 + 9} = \sqrt{81} = 9 ∣ r ′ ( 0 ) ∣ = 6 2 + ( − 6 ) 2 + 3 2 = 36 + 36 + 9 = 81 = 9
1.3 Compute T ( 0 ) T(0) T ( 0 )
T ( 0 ) = r ′ ( 0 ) ∣ r ′ ( 0 ) ∣ = 1 9 ( 6 − 6 3 ) = ( 2 3 − 2 3 1 3 ) T(0) = \frac{r'(0)}{|r'(0)|} = \frac{1}{9} \begin{pmatrix} 6 \\ -6 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix} T ( 0 ) = ∣ r ′ ( 0 ) ∣ r ′ ( 0 ) = 9 1 6 − 6 3 = 3 2 − 3 2 3 1
2. Finding r ′ ′ ( 0 ) r''(0) r ′′ ( 0 )
To find r ′ ′ ( 0 ) r''(0) r ′′ ( 0 ) , differentiate r ′ ( t ) r'(t) r ′ ( t ) with respect to t t t and then evaluate it at t = 0 t = 0 t = 0 .
r ′ ′ ( t ) = d d t ( 6 e 3 t − 6 e − 3 t 3 e 3 t + 9 t e 3 t ) = ( 18 e 3 t 18 e − 3 t 18 t e 3 t + 18 e 3 t ) r''(t) = \frac{d}{dt} \begin{pmatrix} 6e^{3t} \\ -6e^{-3t} \\ 3e^{3t} + 9te^{3t} \end{pmatrix} = \begin{pmatrix} 18e^{3t} \\ 18e^{-3t} \\ 18te^{3t} + 18e^{3t} \end{pmatrix} r ′′ ( t ) = d t d 6 e 3 t − 6 e − 3 t 3 e 3 t + 9 t e 3 t = 18 e 3 t 18 e − 3 t 18 t e 3 t + 18 e 3 t
Now, evaluate r ′ ′ ( t ) r''(t) r ′′ ( t ) at t = 0 t = 0 t = 0 :
r ′ ′ ( 0 ) = ( 18 e 0 18 e 0 18 ⋅ 0 ⋅ e 0 + 18 e 0 ) = ( 18 18 18 ) r''(0) = \begin{pmatrix} 18e^{0} \\ 18e^{0} \\ 18 \cdot 0 \cdot e^{0} + 18e^{0} \end{pmatrix} = \begin{pmatrix} 18 \\ 18 \\ 18 \end{pmatrix} r ′′ ( 0 ) = 18 e 0 18 e 0 18 ⋅ 0 ⋅ e 0 + 18 e 0 = 18 18 18
3. Finding r ′ ( t ) ⋅ r ′ ′ ( t ) r'(t) \cdot r''(t) r ′ ( t ) ⋅ r ′′ ( t )
The dot product r ′ ( t ) ⋅ r ′ ′ ( t ) r'(t) \cdot r''(t) r ′ ( t ) ⋅ r ′′ ( t ) is given by:
r ′ ( t ) ⋅ r ′ ′ ( t ) = ( 6 e 3 t − 6 e − 3 t 3 e 3 t + 9 t e 3 t ) ⋅ ( 18 e 3 t 18 e − 3 t 18 t e 3 t + 18 e 3 t ) r'(t) \cdot r''(t) = \begin{pmatrix} 6e^{3t} \\ -6e^{-3t} \\ 3e^{3t} + 9te^{3t} \end{pmatrix} \cdot \begin{pmatrix} 18e^{3t} \\ 18e^{-3t} \\ 18te^{3t} + 18e^{3t} \end{pmatrix} r ′ ( t ) ⋅ r ′′ ( t ) = 6 e 3 t − 6 e − 3 t 3 e 3 t + 9 t e 3 t ⋅ 18 e 3 t 18 e − 3 t 18 t e 3 t + 18 e 3 t
This results in:
r ′ ( t ) ⋅ r ′ ′ ( t ) = 6 e 3 t ⋅ 18 e 3 t + ( − 6 e − 3 t ) ⋅ 18 e − 3 t + ( 3 e 3 t + 9 t e 3 t ) ⋅ ( 18 t e 3 t + 18 e 3 t ) r'(t) \cdot r''(t) = 6e^{3t} \cdot 18e^{3t} + (-6e^{-3t}) \cdot 18e^{-3t} + \left(3e^{3t} + 9te^{3t}\right) \cdot \left(18te^{3t} + 18e^{3t}\right) r ′ ( t ) ⋅ r ′′ ( t ) = 6 e 3 t ⋅ 18 e 3 t + ( − 6 e − 3 t ) ⋅ 18 e − 3 t + ( 3 e 3 t + 9 t e 3 t ) ⋅ ( 18 t e 3 t + 18 e 3 t )
Simplify each term:
r ′ ( t ) ⋅ r ′ ′ ( t ) = 108 e 6 t − 108 e − 6 t + ( 3 e 3 t ⋅ 18 e 3 t + 3 e 3 t ⋅ 18 t e 3 t + 9 t e 3 t ⋅ 18 e 3 t + 9 t e 3 t ⋅ 18 t e 3 t ) r'(t) \cdot r''(t) = 108e^{6t} - 108e^{-6t} + \left(3e^{3t} \cdot 18e^{3t} + 3e^{3t} \cdot 18te^{3t} + 9te^{3t} \cdot 18e^{3t} + 9te^{3t} \cdot 18te^{3t}\right) r ′ ( t ) ⋅ r ′′ ( t ) = 108 e 6 t − 108 e − 6 t + ( 3 e 3 t ⋅ 18 e 3 t + 3 e 3 t ⋅ 18 t e 3 t + 9 t e 3 t ⋅ 18 e 3 t + 9 t e 3 t ⋅ 18 t e 3 t )
Expanding and simplifying:
r ′ ( t ) ⋅ r ′ ′ ( t ) = 108 e 6 t − 108 e − 6 t + 54 e 6 t + 54 t e 6 t + 162 t e 6 t + 162 t 2 e 6 t r'(t) \cdot r''(t) = 108e^{6t} - 108e^{-6t} + 54e^{6t} + 54te^{6t} + 162te^{6t} + 162t^2e^{6t} r ′ ( t ) ⋅ r ′′ ( t ) = 108 e 6 t − 108 e − 6 t + 54 e 6 t + 54 t e 6 t + 162 t e 6 t + 162 t 2 e 6 t
Thus,
r ′ ( t ) ⋅ r ′ ′ ( t ) = 162 e 6 t + 216 t e 6 t + 162 t 2 e 6 t − 108 e − 6 t r'(t) \cdot r''(t) = 162e^{6t} + 216te^{6t} + 162t^2e^{6t} - 108e^{-6t} r ′ ( t ) ⋅ r ′′ ( t ) = 162 e 6 t + 216 t e 6 t + 162 t 2 e 6 t − 108 e − 6 t
Summary of Answers:
T ( 0 ) = ( 2 3 − 2 3 1 3 ) T(0) = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix} T ( 0 ) = 3 2 − 3 2 3 1
r ′ ′ ( 0 ) = ( 18 18 18 ) r''(0) = \begin{pmatrix} 18 \\ 18 \\ 18 \end{pmatrix} r ′′ ( 0 ) = 18 18 18
r ′ ( t ) ⋅ r ′ ′ ( t ) = 162 e 6 t + 216 t e 6 t + 162 t 2 e 6 t − 108 e − 6 t r'(t) \cdot r''(t) = 162e^{6t} + 216te^{6t} + 162t^2e^{6t} - 108e^{-6t} r ′ ( t ) ⋅ r ′′ ( t ) = 162 e 6 t + 216 t e 6 t + 162 t 2 e 6 t − 108 e − 6 t
Would you like more details or have any questions?
Here are five related questions to explore:
How would you find the curvature of the curve r ( t ) r(t) r ( t ) at any point t t t ?
What is the geometric interpretation of r ′ ( t ) ⋅ r ′ ′ ( t ) r'(t) \cdot r''(t) r ′ ( t ) ⋅ r ′′ ( t ) ?
How does the unit normal vector N ( t ) N(t) N ( t ) relate to T ( t ) T(t) T ( t ) and r ′ ′ ( t ) r''(t) r ′′ ( t ) ?
Can you find the arc length of r ( t ) r(t) r ( t ) from t = 0 t = 0 t = 0 to t = 1 t = 1 t = 1 ?
How would you compute the torsion of the curve given by r ( t ) r(t) r ( t ) ?
Tip: Always ensure that you differentiate correctly when dealing with vector functions. Each component should be treated independently, but remember to combine results appropriately.