Math Problem Statement

Find the dot product of vectors a and b with |a| = 5, |b| = √14, and the angle between them is 45°. Determine if given vectors in parts (a), (b), and (c) are orthogonal, parallel, or neither.

Solution

Solution for Problems

Problem 3: Find ab\mathbf{a} \cdot \mathbf{b}

Given:

  • a=5|\mathbf{a}| = 5
  • b=14|\mathbf{b}| = \sqrt{14}
  • The angle between a\mathbf{a} and b\mathbf{b} is 4545^\circ.

The dot product formula is: ab=abcos(θ)\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)

Substitute the values: ab=514cos(45)\mathbf{a} \cdot \mathbf{b} = 5 \cdot \sqrt{14} \cdot \cos(45^\circ)

Since cos(45)=22\cos(45^\circ) = \frac{\sqrt{2}}{2}, we have: ab=51422=5282\mathbf{a} \cdot \mathbf{b} = 5 \cdot \sqrt{14} \cdot \frac{\sqrt{2}}{2} = \frac{5\sqrt{28}}{2}

Simplify 28\sqrt{28} as 272\sqrt{7}: ab=5272=57\mathbf{a} \cdot \mathbf{b} = \frac{5 \cdot 2 \sqrt{7}}{2} = 5\sqrt{7}

Thus, ab=57\mathbf{a} \cdot \mathbf{b} = 5\sqrt{7}.


Problem 4: Determine the relationship between vectors

(a) u=2,4,6\mathbf{u} = \langle -2, 4, -6 \rangle, v=8,4,1\mathbf{v} = \langle 8, 4, -1 \rangle

To check:

  1. Orthogonal: Compute uv\mathbf{u} \cdot \mathbf{v}: uv=(2)(8)+(4)(4)+(6)(1)=16+16+6=6\mathbf{u} \cdot \mathbf{v} = (-2)(8) + (4)(4) + (-6)(-1) = -16 + 16 + 6 = 6 Since uv0\mathbf{u} \cdot \mathbf{v} \neq 0, u\mathbf{u} and v\mathbf{v} are not orthogonal.

  2. Parallel: Check if v=ku\mathbf{v} = k\mathbf{u} for some kk. The components do not scale proportionally (28k-2 \neq 8k, etc.), so they are not parallel.

Thus, u\mathbf{u} and v\mathbf{v} are neither.


(b) u=15i12j+9k\mathbf{u} = 15\mathbf{i} - 12\mathbf{j} + 9\mathbf{k}, v=10i+8j6k\mathbf{v} = -10\mathbf{i} + 8\mathbf{j} - 6\mathbf{k}

Compute uv\mathbf{u} \cdot \mathbf{v}: uv=(15)(10)+(12)(8)+(9)(6)=1509654=300\mathbf{u} \cdot \mathbf{v} = (15)(-10) + (-12)(8) + (9)(-6) = -150 - 96 - 54 = -300 Since uv0\mathbf{u} \cdot \mathbf{v} \neq 0, u\mathbf{u} and v\mathbf{v} are not orthogonal.

For parallelism, the ratios 1510,128,96\frac{15}{-10}, \frac{-12}{8}, \frac{9}{-6} are not equal, so u\mathbf{u} and v\mathbf{v} are not parallel.

Thus, u\mathbf{u} and v\mathbf{v} are neither.


(c) u=c,c,c\mathbf{u} = \langle c, c, c \rangle, v=c,0,c\mathbf{v} = \langle c, 0, -c \rangle

Compute uv\mathbf{u} \cdot \mathbf{v}: uv=c(c)+c(0)+c(c)=c2c2=0\mathbf{u} \cdot \mathbf{v} = c(c) + c(0) + c(-c) = c^2 - c^2 = 0 Since uv=0\mathbf{u} \cdot \mathbf{v} = 0, u\mathbf{u} and v\mathbf{v} are orthogonal.


Summary of Answers:

  • 3. 575\sqrt{7}
  • 4a. Neither
  • 4b. Neither
  • 4c. Orthogonal

Would you like further details on any step?

Related Questions:

  1. How is the dot product related to the angle between two vectors?
  2. Can orthogonality be determined without computing the dot product?
  3. How can vectors be tested for parallelism geometrically?
  4. What are the properties of unit vectors in terms of dot products?
  5. How does the cross product differ from the dot product in vector analysis?

Tip:

Always simplify square roots and trigonometric functions before substituting in formulas for easier calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Dot Product
Vector Orthogonality
Vector Parallelism

Formulas

Dot product formula: a · b = |a| |b| cos(θ)
Orthogonality condition: a · b = 0
Parallelism condition: a = k · b for some scalar k

Theorems

Properties of the Dot Product

Suitable Grade Level

Grades 11-12