Math Problem Statement
Дан параллелепипед ABCDA1B1C1D1. Основание параллелепипеда – прямоугольник. Точки K, L и M – середины векторов AA1→𝐴𝐴1→, B1C1→𝐵1𝐶1→, CC1→𝐶𝐶1→ соответственно. Выберите вектор, который получится, если отложить от точки C вектор, сонаправленный вектору LC1→𝐿𝐶1→
Выберите один ответ:
BL→𝐵𝐿→
BD→𝐵𝐷→
BM→𝐵𝑀→
BC→𝐵𝐶→
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vectors
Geometry of 3D shapes
Coordinate geometry
Formulas
Vector addition and direction
Midpoint formula for vectors
Theorems
Vector direction and alignment
Suitable Grade Level
Grades 10-12
Related Recommendation
Vector Operations in a Parallelogram: Addition, Subtraction, and Midpoints
Vector Geometry Problem: Proving Collinearity in a Parallelogram
Finding Vectors AE, AF, and DE in a Parallelepiped with Diagonal Intersections
Parallelepiped Geometry Problem with Midpoints M and N
Vector Geometry Problem: Concyclic Points in Triangle ABC with Dot Product