Math Problem Statement

Find the following using u = h4, 8, −8i, v = 9i − 10j + 11k, and w = 5i − 2k. a) 3u − 4v b) |u + w| c) v · w d) A unit vector parallel to u

Solution

Let's calculate each of the parts step by step.

Given:

  • u=(488)\mathbf{u} = \begin{pmatrix} 4 \\ 8 \\ -8 \end{pmatrix}
  • v=(01011)\mathbf{v} = \begin{pmatrix} 0 \\ -10 \\ 11 \end{pmatrix}
  • w=(502)\mathbf{w} = \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix}

a) 3u4v3\mathbf{u} - 4\mathbf{v}

Calculating 3u3\mathbf{u}: 3u=3(488)=(122424)3\mathbf{u} = 3 \begin{pmatrix} 4 \\ 8 \\ -8 \end{pmatrix} = \begin{pmatrix} 12 \\ 24 \\ -24 \end{pmatrix}

Calculating 4v4\mathbf{v}: 4v=4(01011)=(04044)4\mathbf{v} = 4 \begin{pmatrix} 0 \\ -10 \\ 11 \end{pmatrix} = \begin{pmatrix} 0 \\ -40 \\ 44 \end{pmatrix}

Now, subtract 4v4\mathbf{v} from 3u3\mathbf{u}: 3u4v=(122424)(04044)=(126468)3\mathbf{u} - 4\mathbf{v} = \begin{pmatrix} 12 \\ 24 \\ -24 \end{pmatrix} - \begin{pmatrix} 0 \\ -40 \\ 44 \end{pmatrix} = \begin{pmatrix} 12 \\ 64 \\ -68 \end{pmatrix}

b) u+w|\mathbf{u} + \mathbf{w}|

Calculating u+w\mathbf{u} + \mathbf{w}: u+w=(488)+(502)=(9810)\mathbf{u} + \mathbf{w} = \begin{pmatrix} 4 \\ 8 \\ -8 \end{pmatrix} + \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 9 \\ 8 \\ -10 \end{pmatrix}

Now, calculating the magnitude: u+w=92+82+(10)2=81+64+100=245=75|\mathbf{u} + \mathbf{w}| = \sqrt{9^2 + 8^2 + (-10)^2} = \sqrt{81 + 64 + 100} = \sqrt{245} = 7\sqrt{5}

c) vw\mathbf{v} \cdot \mathbf{w}

Calculating the dot product: vw=(01011)(502)=(0)(5)+(10)(0)+(11)(2)=0+022=22\mathbf{v} \cdot \mathbf{w} = \begin{pmatrix} 0 \\ -10 \\ 11 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix} = (0)(5) + (-10)(0) + (11)(-2) = 0 + 0 - 22 = -22

d) A unit vector parallel to u\mathbf{u}

First, find the magnitude of u\mathbf{u}: u=42+82+(8)2=16+64+64=144=12|\mathbf{u}| = \sqrt{4^2 + 8^2 + (-8)^2} = \sqrt{16 + 64 + 64} = \sqrt{144} = 12

Now, the unit vector uunit\mathbf{u}_{unit}: uunit=1uu=112(488)=(132323)\mathbf{u}_{unit} = \frac{1}{|\mathbf{u}|} \mathbf{u} = \frac{1}{12} \begin{pmatrix} 4 \\ 8 \\ -8 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}

Summary of Results:

a) 3u4v=(126468)3\mathbf{u} - 4\mathbf{v} = \begin{pmatrix} 12 \\ 64 \\ -68 \end{pmatrix}
b) u+w=75|\mathbf{u} + \mathbf{w}| = 7\sqrt{5}
c) vw=22\mathbf{v} \cdot \mathbf{w} = -22
d) A unit vector parallel to u=(132323)\mathbf{u} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}

Do you want details on any part or have any questions? Here are some related questions to consider:

  1. How would the results change if we used different vectors for u\mathbf{u}, v\mathbf{v}, and w\mathbf{w}?
  2. Can you explain how to calculate the cross product of two vectors?
  3. What is the geometric interpretation of the dot product?
  4. How can you verify if two vectors are orthogonal?
  5. What are some applications of unit vectors in physics?

Tip: When working with vectors, always check your calculations for accuracy, especially with sign and magnitude.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Operations
Dot Product
Magnitude
Unit Vectors

Formulas

Vector addition: u + w = (u1 + w1, u2 + w2, u3 + w3)
Magnitude: |v| = √(v1^2 + v2^2 + v3^2)
Dot Product: v · w = (v1 * w1 + v2 * w2 + v3 * w3)
Unit Vector: u_unit = (1/|u|) * u

Theorems

Properties of dot product
Properties of vector addition

Suitable Grade Level

Grades 10-12