Math Problem Statement

Relative to an origin O, the position vectors of the points A and C are (2, 4, 6) and (8, 1, -9) respectively. (a) Express AC as a column vector. (b) The point B lies on AC and is such that AB is perpendicular to OB. Find the position vector of B. (c) Find the shortest distance from O to the line AB.

Solution

Problem Solution:

Given:

  • Position vector of AA: (246)\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}
  • Position vector of CC: (819)\begin{pmatrix} 8 \\ 1 \\ -9 \end{pmatrix}

(a) Express AC\vec{AC} as a column vector:

The vector AC\vec{AC} is given by: AC=CA\vec{AC} = \vec{C} - \vec{A} AC=(819)(246)=(821496)=(6315)\vec{AC} = \begin{pmatrix} 8 \\ 1 \\ -9 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 - 2 \\ 1 - 4 \\ -9 - 6 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} Thus, AC=(6315)\vec{AC} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix}.


(b) Find the position vector of BB:

Point BB lies on ACAC, meaning B\vec{B} can be expressed as: B=A+λAC\vec{B} = \vec{A} + \lambda \vec{AC} where λ\lambda is a scalar parameter.

Since ABAB is perpendicular to OBOB, the dot product ABOB=0\vec{AB} \cdot \vec{OB} = 0. First, we compute: AB=BA=(A+λAC)A=λAC\vec{AB} = \vec{B} - \vec{A} = (\vec{A} + \lambda \vec{AC}) - \vec{A} = \lambda \vec{AC} and OB=B=A+λAC\vec{OB} = \vec{B} = \vec{A} + \lambda \vec{AC}

The perpendicularity condition becomes: ABOB=(λAC)(A+λAC)=0\vec{AB} \cdot \vec{OB} = (\lambda \vec{AC}) \cdot (\vec{A} + \lambda \vec{AC}) = 0

Substitute AC=(6315)\vec{AC} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} and A=(246)\vec{A} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, and solve for λ\lambda. Expand the dot product: λACA+λ2ACAC=0\lambda \vec{AC} \cdot \vec{A} + \lambda^2 \vec{AC} \cdot \vec{AC} = 0

  1. Compute ACA\vec{AC} \cdot \vec{A}: ACA=(6315)(246)=(62)+(34)+(156)=121290=90\vec{AC} \cdot \vec{A} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = (6 \cdot 2) + (-3 \cdot 4) + (-15 \cdot 6) = 12 - 12 - 90 = -90
  2. Compute ACAC\vec{AC} \cdot \vec{AC}: ACAC=(6315)(6315)=(66)+(33)+(1515)=36+9+225=270\vec{AC} \cdot \vec{AC} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} = (6 \cdot 6) + (-3 \cdot -3) + (-15 \cdot -15) = 36 + 9 + 225 = 270

The equation becomes: λ(90)+λ2(270)=0\lambda (-90) + \lambda^2 (270) = 0 Factorize: λ(90+270λ)=0\lambda (-90 + 270\lambda) = 0 λ=0orλ=13\lambda = 0 \quad \text{or} \quad \lambda = \frac{1}{3}

When λ=0\lambda = 0, B=A\vec{B} = \vec{A}, but BAB \neq A. Thus, λ=13\lambda = \frac{1}{3}.

Substitute λ=13\lambda = \frac{1}{3} into B=A+λAC\vec{B} = \vec{A} + \lambda \vec{AC}: B=(246)+13(6315)=(246)+(215)=(431)\vec{B} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} Thus, B=(431)\vec{B} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}.


(c) Find the shortest distance from OO to the line ABAB:

The shortest distance from a point to a line is given by: d=OA×ABABd = \frac{|\vec{OA} \times \vec{AB}|}{|\vec{AB}|}

  1. Compute OA=(246)\vec{OA} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, AB=(431)(246)=(215)\vec{AB} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}.

  2. Compute OA×AB\vec{OA} \times \vec{AB}: [ \vec{OA} \times \vec{AB} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & 4 & 6 \ 2 &

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector subtraction
Dot product
Cross product
Shortest distance from a point to a line

Formulas

Vector subtraction: \( \vec{AC} = \vec{C} - \vec{A} \)
Dot product for perpendicularity: \( \vec{AB} \cdot \vec{OB} = 0 \)
Shortest distance formula: \( d = \frac{|\vec{OA} \times \vec{AB}|}{|\vec{AB}|} \)

Theorems

Condition for perpendicular vectors
Cross product properties

Suitable Grade Level

Grades 11-12 or Undergraduate Level