Math Problem StatementRelative to an origin O, the position vectors of the points A and C are (2, 4, 6) and (8, 1, -9) respectively. (a) Express AC as a column vector. (b) The point B lies on AC and is such that AB is perpendicular to OB. Find the position vector of B. (c) Find the shortest distance from O to the line AB.
SolutionProblem Solution:
Given:
Position vector of A A A : ( 2 4 6 ) \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} 2 4 6
Position vector of C C C : ( 8 1 − 9 ) \begin{pmatrix} 8 \\ 1 \\ -9 \end{pmatrix} 8 1 − 9
(a) Express A C ⃗ \vec{AC} A C as a column vector:
The vector A C ⃗ \vec{AC} A C is given by:
A C ⃗ = C ⃗ − A ⃗ \vec{AC} = \vec{C} - \vec{A} A C = C − A
A C ⃗ = ( 8 1 − 9 ) − ( 2 4 6 ) = ( 8 − 2 1 − 4 − 9 − 6 ) = ( 6 − 3 − 15 ) \vec{AC} = \begin{pmatrix} 8 \\ 1 \\ -9 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 - 2 \\ 1 - 4 \\ -9 - 6 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} A C = 8 1 − 9 − 2 4 6 = 8 − 2 1 − 4 − 9 − 6 = 6 − 3 − 15
Thus, A C ⃗ = ( 6 − 3 − 15 ) \vec{AC} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} A C = 6 − 3 − 15 .
(b) Find the position vector of B B B :
Point B B B lies on A C AC A C , meaning B ⃗ \vec{B} B can be expressed as:
B ⃗ = A ⃗ + λ A C ⃗ \vec{B} = \vec{A} + \lambda \vec{AC} B = A + λ A C
where λ \lambda λ is a scalar parameter.
Since A B AB A B is perpendicular to O B OB OB , the dot product A B ⃗ ⋅ O B ⃗ = 0 \vec{AB} \cdot \vec{OB} = 0 A B ⋅ OB = 0 . First, we compute:
A B ⃗ = B ⃗ − A ⃗ = ( A ⃗ + λ A C ⃗ ) − A ⃗ = λ A C ⃗ \vec{AB} = \vec{B} - \vec{A} = (\vec{A} + \lambda \vec{AC}) - \vec{A} = \lambda \vec{AC} A B = B − A = ( A + λ A C ) − A = λ A C
and
O B ⃗ = B ⃗ = A ⃗ + λ A C ⃗ \vec{OB} = \vec{B} = \vec{A} + \lambda \vec{AC} OB = B = A + λ A C
The perpendicularity condition becomes:
A B ⃗ ⋅ O B ⃗ = ( λ A C ⃗ ) ⋅ ( A ⃗ + λ A C ⃗ ) = 0 \vec{AB} \cdot \vec{OB} = (\lambda \vec{AC}) \cdot (\vec{A} + \lambda \vec{AC}) = 0 A B ⋅ OB = ( λ A C ) ⋅ ( A + λ A C ) = 0
Substitute A C ⃗ = ( 6 − 3 − 15 ) \vec{AC} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} A C = 6 − 3 − 15 and A ⃗ = ( 2 4 6 ) \vec{A} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} A = 2 4 6 , and solve for λ \lambda λ . Expand the dot product:
λ A C ⃗ ⋅ A ⃗ + λ 2 A C ⃗ ⋅ A C ⃗ = 0 \lambda \vec{AC} \cdot \vec{A} + \lambda^2 \vec{AC} \cdot \vec{AC} = 0 λ A C ⋅ A + λ 2 A C ⋅ A C = 0
Compute A C ⃗ ⋅ A ⃗ \vec{AC} \cdot \vec{A} A C ⋅ A :
A C ⃗ ⋅ A ⃗ = ( 6 − 3 − 15 ) ⋅ ( 2 4 6 ) = ( 6 ⋅ 2 ) + ( − 3 ⋅ 4 ) + ( − 15 ⋅ 6 ) = 12 − 12 − 90 = − 90 \vec{AC} \cdot \vec{A} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = (6 \cdot 2) + (-3 \cdot 4) + (-15 \cdot 6) = 12 - 12 - 90 = -90 A C ⋅ A = 6 − 3 − 15 ⋅ 2 4 6 = ( 6 ⋅ 2 ) + ( − 3 ⋅ 4 ) + ( − 15 ⋅ 6 ) = 12 − 12 − 90 = − 90
Compute A C ⃗ ⋅ A C ⃗ \vec{AC} \cdot \vec{AC} A C ⋅ A C :
A C ⃗ ⋅ A C ⃗ = ( 6 − 3 − 15 ) ⋅ ( 6 − 3 − 15 ) = ( 6 ⋅ 6 ) + ( − 3 ⋅ − 3 ) + ( − 15 ⋅ − 15 ) = 36 + 9 + 225 = 270 \vec{AC} \cdot \vec{AC} = \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} = (6 \cdot 6) + (-3 \cdot -3) + (-15 \cdot -15) = 36 + 9 + 225 = 270 A C ⋅ A C = 6 − 3 − 15 ⋅ 6 − 3 − 15 = ( 6 ⋅ 6 ) + ( − 3 ⋅ − 3 ) + ( − 15 ⋅ − 15 ) = 36 + 9 + 225 = 270
The equation becomes:
λ ( − 90 ) + λ 2 ( 270 ) = 0 \lambda (-90) + \lambda^2 (270) = 0 λ ( − 90 ) + λ 2 ( 270 ) = 0
Factorize:
λ ( − 90 + 270 λ ) = 0 \lambda (-90 + 270\lambda) = 0 λ ( − 90 + 270 λ ) = 0
λ = 0 or λ = 1 3 \lambda = 0 \quad \text{or} \quad \lambda = \frac{1}{3} λ = 0 or λ = 3 1
When λ = 0 \lambda = 0 λ = 0 , B ⃗ = A ⃗ \vec{B} = \vec{A} B = A , but B ≠ A B \neq A B = A . Thus, λ = 1 3 \lambda = \frac{1}{3} λ = 3 1 .
Substitute λ = 1 3 \lambda = \frac{1}{3} λ = 3 1 into B ⃗ = A ⃗ + λ A C ⃗ \vec{B} = \vec{A} + \lambda \vec{AC} B = A + λ A C :
B ⃗ = ( 2 4 6 ) + 1 3 ( 6 − 3 − 15 ) = ( 2 4 6 ) + ( 2 − 1 − 5 ) = ( 4 3 1 ) \vec{B} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 6 \\ -3 \\ -15 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} B = 2 4 6 + 3 1 6 − 3 − 15 = 2 4 6 + 2 − 1 − 5 = 4 3 1
Thus, B ⃗ = ( 4 3 1 ) \vec{B} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} B = 4 3 1 .
(c) Find the shortest distance from O O O to the line A B AB A B :
The shortest distance from a point to a line is given by:
d = ∣ O A ⃗ × A B ⃗ ∣ ∣ A B ⃗ ∣ d = \frac{|\vec{OA} \times \vec{AB}|}{|\vec{AB}|} d = ∣ A B ∣ ∣ O A × A B ∣
Compute O A ⃗ = ( 2 4 6 ) \vec{OA} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} O A = 2 4 6 , A B ⃗ = ( 4 3 1 ) − ( 2 4 6 ) = ( 2 − 1 − 5 ) \vec{AB} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix} A B = 4 3 1 − 2 4 6 = 2 − 1 − 5 .
Compute O A ⃗ × A B ⃗ \vec{OA} \times \vec{AB} O A × A B :
[
\vec{OA} \times \vec{AB} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & 4 & 6 \ 2 &