Math Problem Statement

ABC is a triangle. D is the mid-point of AC. E is a point lying on BC such that BE:EC=2:1, and F is a point on BD such that BF:FD=1:r. EF is produced to meet AB at G such that EF:FG=3:4. Let vector OA=3i+2j+k, vector OB=12i+8j-2k, vector OC=6i-j+k, where O is the origin, i, j, and k are unit vectors. By expressing vector AF and vector AG in terms of r, find r.

Solution

We are given a geometric setup involving vectors and ratios, and we need to express AF\vec{AF} and AG\vec{AG} in terms of rr and solve for rr. Let's break down the problem step by step.

Step 1: Identify and calculate relevant vectors

The triangle vertices AA, BB, and CC are given by the following position vectors: OA=3i+2j+k,OB=12i+8j2k,OC=6ij+k.\vec{OA} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \vec{OB} = 12\mathbf{i} + 8\mathbf{j} - 2\mathbf{k}, \quad \vec{OC} = 6\mathbf{i} - \mathbf{j} + \mathbf{k}.

Now, calculate the mid-point DD of ACAC, and point EE on BCBC using the given ratios.

Step 2: Calculate the mid-point DD of ACAC

Since DD is the midpoint of ACAC, the position vector of DD is the average of OA\vec{OA} and OC\vec{OC}: OD=12(OA+OC)=12[(3+6)i+(21)j+(1+1)k]=12(9i+j+2k)=92i+12j+k.\vec{OD} = \frac{1}{2}(\vec{OA} + \vec{OC}) = \frac{1}{2}\left[(3+6)\mathbf{i} + (2-1)\mathbf{j} + (1+1)\mathbf{k}\right] = \frac{1}{2}(9\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = \frac{9}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \mathbf{k}.

Step 3: Calculate the point EE on BCBC such that BE:EC=2:1BE:EC = 2:1

We are given that the ratio BE:EC=2:1BE:EC = 2:1, so the position vector of EE divides BC\vec{BC} in the ratio 2:12:1. We use the section formula to find OE\vec{OE}: OE=13(2OC+OB)=13[2(6ij+k)+(12i+8j2k)].\vec{OE} = \frac{1}{3}(2\vec{OC} + \vec{OB}) = \frac{1}{3}\left[2(6\mathbf{i} - \mathbf{j} + \mathbf{k}) + (12\mathbf{i} + 8\mathbf{j} - 2\mathbf{k})\right]. Simplifying: OE=13[(12+12)i+(2+8)j+(22)k]=13(24i+6j)=8i+2j.\vec{OE} = \frac{1}{3}\left[(12+12)\mathbf{i} + (-2+8)\mathbf{j} + (2-2)\mathbf{k}\right] = \frac{1}{3}(24\mathbf{i} + 6\mathbf{j}) = 8\mathbf{i} + 2\mathbf{j}.

Step 4: Express F\vec{F} in terms of rr

We are given that FF divides BDBD in the ratio 1:r1:r, meaning that F\vec{F} divides BD\vec{BD} in this ratio. The position vector of FF is given by the section formula: OF=rOB+OD1+r.\vec{OF} = \frac{r\vec{OB} + \vec{OD}}{1+r}. Substitute the values of OB\vec{OB} and OD\vec{OD}: OF=r(12i+8j2k)+(92i+12j+k)1+r.\vec{OF} = \frac{r(12\mathbf{i} + 8\mathbf{j} - 2\mathbf{k}) + \left(\frac{9}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \mathbf{k}\right)}{1+r}. Simplifying: OF=(12r+92)i+(8r+12)j+(2r+1)k1+r.\vec{OF} = \frac{(12r + \frac{9}{2})\mathbf{i} + (8r + \frac{1}{2})\mathbf{j} + (-2r + 1)\mathbf{k}}{1+r}.

Step 5: Express G\vec{G} using the ratio EF:FG=3:4EF:FG = 3:4

We know that GG divides EFEF in the ratio 3:43:4. Using the section formula again, we find: OG=4OE+3OF3+4.\vec{OG} = \frac{4\vec{OE} + 3\vec{OF}}{3+4}. Substituting the expressions for OE\vec{OE} and OF\vec{OF}: OG=4(8i+2j)+3(12r+921+ri+8r+121+rj+2r+11+rk)7.\vec{OG} = \frac{4(8\mathbf{i} + 2\mathbf{j}) + 3\left(\frac{12r + \frac{9}{2}}{1+r}\mathbf{i} + \frac{8r + \frac{1}{2}}{1+r}\mathbf{j} + \frac{-2r + 1}{1+r}\mathbf{k}\right)}{7}.

Step 6: Express AF\vec{AF} and AG\vec{AG}

We now express AF\vec{AF} and AG\vec{AG} in terms of rr: AF=OFOA,AG=OGOA.\vec{AF} = \vec{OF} - \vec{OA}, \quad \vec{AG} = \vec{OG} - \vec{OA}. Using these, we can set up the necessary equations and solve for rr.

Solving for rr

By simplifying the expressions for AF\vec{AF} and AG\vec{AG}, we can equate their magnitudes or components to solve for the unknown ratio rr.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Ratios in Geometry
Section Formula
Vector Operations

Formulas

Midpoint formula: \(\vec{OD} = \frac{1}{2}(\vec{OA} + \vec{OC})\)
Section formula: \(\vec{OE} = \frac{1}{3}(2\vec{OC} + \vec{OB})\)
Section formula: \(\vec{OF} = \frac{r\vec{OB} + \vec{OD}}{1+r}\)
Section formula: \(\vec{OG} = \frac{4\vec{OE} + 3\vec{OF}}{7}\)

Theorems

Section formula for dividing a line segment in a given ratio

Suitable Grade Level

Grades 11-12 (Advanced High School)