Math Problem Statement

1. Soient \( \vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \) et \( \vec{v} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \). Montrer que \( \vec{u} \) et \( \vec{v} \) ne sont pas colinéaires. Exprimer le vecteur \( \vec{w} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \) en tant que combinaison linéaire de \( \vec{u} \) et \( \vec{v} \). Représenter graphiquement les vecteurs \( \vec{u}, \vec{v} \) et \( \vec{w} \). 2. Soient \( \vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \) et \( \vec{v} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \). Montrer que \( \vec{u} \) et \( \vec{v} \) sont colinéaires. Est-il possible d'exprimer le vecteur \( \vec{w} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \) en tant que combinaison linéaire de \( \vec{u} \) et \( \vec{v} \)?

Solution

Let's go through the two exercises and their respective tasks:

Exercise 1

  1. Vectors: u=(21),v=(62)\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} You are asked to:
    • Show that u\vec{u} and v\vec{v} are not collinear.
    • Express the vector w=(43)\vec{w} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} as a linear combination of u\vec{u} and v\vec{v}.
    • Graphically represent the vectors u\vec{u}, v\vec{v}, and w\vec{w}.

Solution Outline:

  • Non-collinearity: Two vectors are collinear if one is a scalar multiple of the other. Here, check if: v=ku\vec{v} = k\vec{u} for some scalar kk. If no such kk exists, then the vectors are not collinear.

  • Linear Combination: The vector w\vec{w} can be written as a linear combination of u\vec{u} and v\vec{v}, i.e., w=au+bv\vec{w} = a\vec{u} + b\vec{v} Solve for aa and bb by solving the system of equations obtained from comparing components.

Exercise 2

  1. Vectors: u=(21),v=(63)\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} You are asked to:
    • Show that u\vec{u} and v\vec{v} are collinear.
    • Determine if it's possible to express the vector w=(43)\vec{w} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} as a linear combination of u\vec{u} and v\vec{v}.
    • Graphically represent the vectors u\vec{u}, v\vec{v}, and w\vec{w}, and describe the set of vectors that can be expressed as a linear combination of u\vec{u} and v\vec{v}.

Solution Outline:

  • Collinearity: Verify if there is a scalar kk such that: v=ku\vec{v} = k\vec{u} If kk exists, the vectors are collinear.

  • Linear Combination: As in Exercise 1, express w\vec{w} as au+bva\vec{u} + b\vec{v} and solve for aa and bb if possible.

Would you like the detailed calculations or graphical representations for any part?


Related Questions:

  1. What does it mean geometrically when two vectors are collinear?
  2. How do you solve a system of equations to find a linear combination?
  3. What is the geometric interpretation of expressing one vector as a linear combination of others?
  4. How can you determine if three or more vectors form a basis in the plane?
  5. How does the concept of vector independence apply to these problems?

Tip: When solving for linear combinations, always check if the resulting system of equations is consistent to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Linear Combinations
Collinearity
Graphical Representation of Vectors

Formulas

Linear combination: \( \vec{w} = a \vec{u} + b \vec{v} \)
Collinearity condition: \( \vec{v} = k \vec{u} \) for some scalar \(k\)

Theorems

Collinearity Theorem
Linear Independence of Vectors

Suitable Grade Level

Grades 10-12 (High School)