Math Problem Statement

λ-nın hansı mümkün qiymətlərində \(\begin{bmatrix}3-\lambda & 2 \\ 2 & 3-\lambda\end{bmatrix}X = \begin{bmatrix}2 \\ -1\end{bmatrix}\) tənliyinin yeganə həlli var?

Solution

The problem involves finding the possible values of λ\lambda for which the given system of linear equations has a unique solution.

Step-by-Step Solution:

  1. Matrix Representation: The equation can be represented as:

    3 - \lambda & 2 \\ 2 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$ The system has a unique solution if the determinant of the coefficient matrix is non-zero.
  2. Determinant of the Coefficient Matrix: Compute the determinant of the matrix:

    3 - \lambda & 2 \\ 2 & 3 - \lambda \end{vmatrix}.$$ Using the determinant formula: $$\text{Det} = (3 - \lambda)(3 - \lambda) - (2)(2).$$ Simplify: $$\text{Det} = (3 - \lambda)^2 - 4.$$ Expand: $$\text{Det} = 9 - 6\lambda + \lambda^2 - 4.$$ $$\text{Det} = \lambda^2 - 6\lambda + 5.$$
  3. Condition for a Unique Solution: A unique solution exists when the determinant is non-zero: λ26λ+50.\lambda^2 - 6\lambda + 5 \neq 0.

  4. Solve for λ\lambda: Factorize the quadratic equation: λ26λ+5=(λ5)(λ1).\lambda^2 - 6\lambda + 5 = (\lambda - 5)(\lambda - 1). The determinant is zero when: λ=5orλ=1.\lambda = 5 \quad \text{or} \quad \lambda = 1. For a unique solution, these values must be excluded: λ5andλ1.\lambda \neq 5 \quad \text{and} \quad \lambda \neq 1.

Final Answer:

The system has a unique solution for: λR{1,5}.\lambda \in \mathbb{R} \setminus \{1, 5\}.

Let me know if you need further clarification or details!


Related Questions:

  1. What happens when λ=1\lambda = 1 or λ=5\lambda = 5?
  2. How does the determinant condition relate to the invertibility of a matrix?
  3. Can this method be extended to larger systems of equations?
  4. How do you solve such systems when λ=1\lambda = 1 or λ=5\lambda = 5?
  5. How can we geometrically interpret the determinant being zero?

Tip:

Always check the determinant of the coefficient matrix when analyzing the solvability of a linear

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Determinants
Systems of Linear Equations

Formulas

Determinant formula for 2x2 matrix: \(\text{Det} = ad - bc\)
Quadratic equation factorization: \(ax^2 + bx + c\)

Theorems

Condition for unique solutions in a linear system: Determinant of the coefficient matrix \(\neq 0\)
Quadratic factorization

Suitable Grade Level

Grades 10-12