Math Problem Statement

On considère la suite (Un) définie sur N par Un = 1/n pour tout n ∈ N. Montrer que pour tout n ∈ N, Un ≥ 0. Soit (Vn) définie sur N par Vn = √n + Un. Exprimer Vn+1 - Vn en fonction de n et de Un. Montrer que (Vn) est décroissante et que pour tout n ∈ N, Un ≤ 1/2√n. Soit (Wn) la définie sur N par Wn = √n Un. Montrer que (Wn) est croissante. Montrer que la suite (Un) est convergente et calculer sa limite. Calculer Un, en fonction de n. En déduire lim n→∞ (2n)!/(n^2n).

Solution

This image contains a set of mathematical questions, likely from an exercise on sequences and limits. I will help you step by step to solve each one. Let's break down the tasks:

1) Show that for all nNn \in \mathbb{N}, Un0U_n \geq 0

This part is asking to prove that the terms of the sequence (Un)(U_n) are non-negative for all natural numbers nn.

2) Consider the sequence (Vn)(V_n) defined for nNn \in \mathbb{N} as Vn=n+UnV_n = \sqrt{n} + U_n

a) Express Vn+1VnV_{n+1} - V_n in terms of nn and UnU_n b) Deduce that (Vn)(V_n) is decreasing and that for all nN,Un12nn \in \mathbb{N}, U_n \leq \frac{1}{2\sqrt{n}}

3) Consider the sequence (Wn)(W_n) defined for nNn \in \mathbb{N} as Wn=nUnW_n = \sqrt{n} U_n

a) Prove that (Wn)(W_n) is increasing. b) Deduce that for all nN,Un14nn \in \mathbb{N}, U_n \geq \frac{1}{4\sqrt{n}}

4) Show that the sequence (Un)(U_n) is convergent and compute its limit.

5) a) Calculate UnU_n as a function of nn.

b) Deduce that limn(2n)!n2n\lim_{n \to \infty} \frac{(2n)!}{n^{2n}} exists.

I can guide you through the solutions step-by-step. Would you like to start with the first question?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Sequences
Limits
Monotonicity
Factorial Growth
Asymptotics

Formulas

Vn = √n + Un
Vn+1 - Vn
Un = 1/n
(2n)!/(n^2n)

Theorems

Monotonicity Theorem for Sequences
Limit Theorems for Sequences

Suitable Grade Level

College/Advanced High School