Math Problem Statement

A rational number can be expressed as any integer divided by any other integer.

Solution

The statement "A rational number can be expressed as any integer divided by any other integer" is almost correct but needs a slight modification to be entirely accurate. The correct statement should be:

A rational number can be expressed as any integer divided by any non-zero integer.

A rational number is any number that can be written in the form ab\frac{a}{b}, where aa and bb are integers and b0b \neq 0. The requirement that b0b \neq 0 is crucial because division by zero is undefined in mathematics.

Would you like more details or have any questions?

Here are some related questions to further explore the topic:

  1. What is the difference between rational and irrational numbers?
  2. Can the square root of a number be a rational number?
  3. How do you determine if a fraction is in its simplest form?
  4. Can a rational number be a negative number?
  5. How do you convert a repeating decimal to a fraction?
  6. What are some examples of rational numbers in everyday life?
  7. How are rational numbers represented on a number line?
  8. What is the decimal expansion of a rational number?

Tip: To convert a repeating decimal to a fraction, you can set up an equation where xx equals the repeating decimal, multiply by a power of 10 to shift the decimal point, and then solve for xx by subtracting the two equations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rational Numbers
Division by Zero

Formulas

-

Theorems

-

Suitable Grade Level

Grades 7-9