Math Problem Statement

triple integral of e^(x+y+z) dx dy dz limits: Outer integral: 0 to log 2 Middle 0 to x Inner : 0 to (x-y)

Solution

To evaluate the triple integral of ex+y+ze^{x + y + z} with the given limits:

0log20x0xyex+y+zdzdydx\int_0^{\log 2} \int_0^x \int_0^{x-y} e^{x + y + z} \, dz \, dy \, dx

We can evaluate this step-by-step:

Step 1: Inner Integral (with respect to zz)

The inner integral is: 0xyex+y+zdz\int_0^{x - y} e^{x + y + z} \, dz Since ex+ye^{x + y} is independent of zz, it acts as a constant: ex+y0xyezdze^{x + y} \int_0^{x - y} e^z \, dz The integral of eze^z is simply eze^z, so we get: ex+y[ez]0xy=ex+y(exye0)=ex+y(exy1)e^{x + y} \left[ e^z \right]_0^{x - y} = e^{x + y} \left( e^{x - y} - e^0 \right) = e^{x + y} \left( e^{x - y} - 1 \right) Thus, the result of the inner integral is: ex+y(exy1)e^{x + y} (e^{x - y} - 1)

Step 2: Middle Integral (with respect to yy)

Now we evaluate the middle integral: 0xex+y(exy1)dy\int_0^x e^{x + y} (e^{x - y} - 1) \, dy Distribute ex+ye^{x + y} across the terms inside the parentheses: 0xex+yexydy0xex+ydy\int_0^x e^{x + y} e^{x - y} \, dy - \int_0^x e^{x + y} \, dy Simplify the exponents: 0xe2xdy0xex+ydy\int_0^x e^{2x} \, dy - \int_0^x e^{x + y} \, dy The first integral is straightforward: e2x0x1dy=e2xxe^{2x} \int_0^x 1 \, dy = e^{2x} \cdot x For the second integral: ex0xeydy=ex[ey]0x=ex(ex1)e^x \int_0^x e^y \, dy = e^x \cdot [e^y]_0^x = e^x (e^x - 1) So the middle integral becomes: e2xxex(ex1)=e2xxe2x+exe^{2x} x - e^x (e^x - 1) = e^{2x} x - e^{2x} + e^x

Step 3: Outer Integral (with respect to xx)

Now, we perform the outer integral: 0log2(e2xxe2x+ex)dx\int_0^{\log 2} \left( e^{2x} x - e^{2x} + e^x \right) \, dx

We break this into three separate integrals:

  1. 0log2e2xxdx\int_0^{\log 2} e^{2x} x \, dx
  2. 0log2e2xdx\int_0^{\log 2} e^{2x} \, dx
  3. 0log2exdx\int_0^{\log 2} e^x \, dx

First Integral:

Use integration by parts for e2xxdx\int e^{2x} x \, dx: Let u=xu = x and dv=e2xdxdv = e^{2x} dx, so du=dxdu = dx and v=12e2xv = \frac{1}{2} e^{2x}.

Applying the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we get: e2xxdx=x2e2x12e2xdx=x2e2x14e2x\int e^{2x} x \, dx = \frac{x}{2} e^{2x} - \frac{1}{2} \int e^{2x} \, dx = \frac{x}{2} e^{2x} - \frac{1}{4} e^{2x} Evaluating from 00 to log2\log 2: [x2e2x14e2x]0log2\left[ \frac{x}{2} e^{2x} - \frac{1}{4} e^{2x} \right]_0^{\log 2} At x=log2x = \log 2: log224144=2log21\frac{\log 2}{2} \cdot 4 - \frac{1}{4} \cdot 4 = 2 \log 2 - 1 At x=0x = 0, both terms vanish, so the result is: 2log212 \log 2 - 1

Second Integral:

The second integral is: 0log2e2xdx\int_0^{\log 2} e^{2x} \, dx This is a standard exponential integral: 12e2x0log2=12(41)=32\frac{1}{2} e^{2x} \Big|_0^{\log 2} = \frac{1}{2} (4 - 1) = \frac{3}{2}

Third Integral:

The third integral is: 0log2exdx=ex0log2=21=1\int_0^{\log 2} e^x \, dx = e^x \Big|_0^{\log 2} = 2 - 1 = 1

Final Result

Now, summing up all three parts: (2log21)32+1=2log212(2 \log 2 - 1) - \frac{3}{2} + 1 = 2 \log 2 - \frac{1}{2}

Thus, the value of the triple integral is: 2log212\boxed{2 \log 2 - \frac{1}{2}}

Would you like more details or clarification? Here are a few follow-up questions:

  1. How does the technique of integration by parts apply in this context?
  2. Can this triple integral be evaluated using other methods, such as switching the order of integration?
  3. What would the integral look like if the limits were changed, for example, if the outer integral were from 0 to 1?
  4. How would the result change if we substituted x=log2x = \log 2 with another expression?
  5. What are the general steps to solving a triple integral with non-constant limits?

Tip: When dealing with integrals with non-constant limits, always carefully examine the limits of integration for each variable before integrating.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integrals
Exponential Functions
Integration by Parts

Formulas

\int e^{x + y + z} dz
\int e^{2x} x dx
Integration by parts formula: \int u dv = uv - \int v du

Theorems

Fundamental Theorem of Calculus
Integration by Parts

Suitable Grade Level

Grades 11-12