Math Problem Statement

02 ⁣4x24x2 ⁣02x+ydzdxdy\int_0^2\!\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}\!\int_0^{2x+y}\mathrm{dz}\,\mathrm{d}x\,\mathrm{dy}

Solution

To evaluate the triple integral

024x24x202x+ydzdydx,\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_0^{2x+y} \, dz \, dy \, dx,

let's proceed step by step.

Step 1: Evaluate the innermost integral

The innermost integral is with respect to zz:

02x+ydz.\int_0^{2x+y} dz.

The integral of 11 with respect to zz is simply zz, so:

02x+ydz=[z]02x+y=(2x+y)0=2x+y.\int_0^{2x+y} dz = \left[ z \right]_0^{2x+y} = (2x + y) - 0 = 2x + y.

Step 2: Update the integral

Substituting this result, the integral becomes:

024x24x2(2x+y)dydx.\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (2x + y) \, dy \, dx.

Step 3: Evaluate the second integral

The second integral is with respect to yy:

4x24x2(2x+y)dy.\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (2x + y) \, dy.

Split this integral into two parts:

4x24x22xdy+4x24x2ydy.\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 2x \, dy + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} y \, dy.

First term:

The integral of 2x2x with respect to yy is:

4x24x22xdy=2x4x24x21dy=2x[y]4x24x2.\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 2x \, dy = 2x \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 1 \, dy = 2x \left[ y \right]_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}.

Substitute the limits:

2x(4x2(4x2))=2x24x2=4x4x2.2x \left( \sqrt{4-x^2} - (-\sqrt{4-x^2}) \right) = 2x \cdot 2\sqrt{4-x^2} = 4x\sqrt{4-x^2}.

Second term:

The integral of yy with respect to yy is:

4x24x2ydy=[y22]4x24x2.\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} y \, dy = \left[ \frac{y^2}{2} \right]_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}.

Evaluate this:

(4x2)22(4x2)22.\frac{\left(\sqrt{4-x^2}\right)^2}{2} - \frac{\left(-\sqrt{4-x^2}\right)^2}{2}.

Since (4x2)2=(4x2)2=4x2\left(\sqrt{4-x^2}\right)^2 = \left(-\sqrt{4-x^2}\right)^2 = 4-x^2, the result is:

4x224x22=0.\frac{4-x^2}{2} - \frac{4-x^2}{2} = 0.

Thus, the second term vanishes.

Combine the results

The second integral simplifies to:

4x24x2(2x+y)dy=4x4x2.\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (2x + y) \, dy = 4x\sqrt{4-x^2}.

Step 4: Evaluate the outermost integral

The outermost integral is:

024x4x2dx.\int_0^2 4x\sqrt{4-x^2} \, dx.

Let u=4x2u = 4 - x^2, so du=2xdxdu = -2x \, dx or xdx=12dux \, dx = -\frac{1}{2} \, du. Change the limits:

  • When x=0x = 0, u=4u = 4.
  • When x=2x = 2, u=0u = 0.

Rewriting the integral:

024x4x2dx=404u(12)du=042udu.\int_0^2 4x\sqrt{4-x^2} \, dx = \int_4^0 4\sqrt{u} \left(-\frac{1}{2}\right) \, du = \int_0^4 2\sqrt{u} \, du.

The integral of 2u2\sqrt{u} is:

042u1/2du=2u3/23/204=43[u3/2]04.\int_0^4 2u^{1/2} \, du = 2 \cdot \frac{u^{3/2}}{3/2} \Big|_0^4 = \frac{4}{3} \cdot \left[ u^{3/2} \right]_0^4.

Evaluate this:

43[(4)3/2(0)3/2]=43(80)=323.\frac{4}{3} \cdot \left[ (4)^{3/2} - (0)^{3/2} \right] = \frac{4}{3} \cdot \left( 8 - 0 \right) = \frac{32}{3}.

Final Answer:

The value of the integral is:

323\boxed{\frac{32}{3}}

Would you like more details or clarifications?

Follow-up Questions:

  1. What are some examples of problems where polar coordinates might simplify integration?
  2. How does the choice of variable substitution affect integral evaluation?
  3. What is the geometric interpretation of this triple integral?
  4. Could this problem be approached using symmetry? Why or why not?
  5. How does the Jacobian factor into changing coordinate systems in triple integrals?

Tip:

Always visualize the region of integration to determine if switching coordinate systems (e.g., polar or spherical) could simplify the computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integrals
Integration
Coordinate Geometry

Formulas

Integral of 1 with respect to z
Change of variable: u = 4 - x^2

Theorems

Fundamental Theorem of Calculus
Substitution Method

Suitable Grade Level

Grades 12-14 (College level)