Math Problem Statement
If sin x = 3/4, x in quadrant I, then find (without finding x) : sin(2x) cos(2x) tan(2x)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Double-angle identities
Pythagorean identity
Formulas
Double-angle identities
Pythagorean identity
Theorems
-
Suitable Grade Level
High School
Related Recommendation
Trigonometry Problem: Find sin(x/2), cos(x/2), and tan(x/2) when sin x = 1/4 in Quadrant 2
Find Trigonometric Values for sin(2x), cos(2x), tan(2x) Given sin(x) = 2/7
Exact Value of \( \sin \left( \cos^{-1} \left( \frac{3}{4} \right) - \tan^{-1} \left( \frac{1}{4} \right) \) \)
Trigonometric Function: Find tan(θ) given sin(θ) = -3/4 in Quadrant II
Solving (3/4) sin^2(4(pi/8)) Using Trigonometric Simplification