Math Problem Statement

Let (-7,-2) be a point on the terminal side of angle.

Solution

Given the point (7,2)(-7, -2) on the terminal side of an angle θ\theta, we can find several trigonometric values for θ\theta. Here's the step-by-step process:

  1. Calculate the radius rr:

    The radius rr (also known as the hypotenuse in the right triangle formed by the point (7,2)(-7, -2)) is calculated using the Pythagorean theorem:

    r=x2+y2=(7)2+(2)2=49+4=53r = \sqrt{x^2 + y^2} = \sqrt{(-7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53}

  2. Find the trigonometric functions:

    Using the coordinates (7,2)(-7, -2) and the radius r=53r = \sqrt{53}, we can find the six trigonometric functions.

    • Sine (sinθ\sin \theta): sinθ=yr=253=253\sin \theta = \frac{y}{r} = \frac{-2}{\sqrt{53}} = -\frac{2}{\sqrt{53}}

    • Cosine (cosθ\cos \theta): cosθ=xr=753=753\cos \theta = \frac{x}{r} = \frac{-7}{\sqrt{53}} = -\frac{7}{\sqrt{53}}

    • Tangent (tanθ\tan \theta): tanθ=yx=27=27\tan \theta = \frac{y}{x} = \frac{-2}{-7} = \frac{2}{7}

    • Cosecant (cscθ\csc \theta): cscθ=ry=532=532\csc \theta = \frac{r}{y} = \frac{\sqrt{53}}{-2} = -\frac{\sqrt{53}}{2}

    • Secant (secθ\sec \theta): secθ=rx=537=537\sec \theta = \frac{r}{x} = \frac{\sqrt{53}}{-7} = -\frac{\sqrt{53}}{7}

    • Cotangent (cotθ\cot \theta): cotθ=xy=72=72\cot \theta = \frac{x}{y} = \frac{-7}{-2} = \frac{7}{2}

So, the trigonometric values for the angle θ\theta are:

sinθ=253,cosθ=753,tanθ=27,cscθ=532,secθ=537,cotθ=72\sin \theta = -\frac{2}{\sqrt{53}}, \quad \cos \theta = -\frac{7}{\sqrt{53}}, \quad \tan \theta = \frac{2}{7}, \quad \csc \theta = -\frac{\sqrt{53}}{2}, \quad \sec \theta = -\frac{\sqrt{53}}{7}, \quad \cot \theta = \frac{7}{2}

Would you like more details or have any questions about these calculations?

Here are some related questions for further practice:

  1. Find the trigonometric values for the point (3,4)(3, -4) on the terminal side of an angle.
  2. Calculate the trigonometric functions for the point (5,12)(-5, 12).
  3. Determine the trigonometric values for the point (8,15)(8, -15).
  4. What are the trigonometric functions for the point (9,40)(-9, 40)?
  5. Compute the trigonometric values for the point (6,8)(6, -8).
  6. Find the trigonometric functions for the point (10,24)(-10, 24).
  7. Determine the trigonometric values for the point (7,24)(7, -24).
  8. What are the trigonometric functions for the point (1,1)(-1, 1)?

Tip: When dealing with trigonometric functions of angles in different quadrants, remember the ASTC rule (All Students Take Calculus) to determine the signs of the functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Coordinate Geometry

Formulas

Pythagorean theorem
Trigonometric functions

Theorems

-

Suitable Grade Level

High School