Math Problem Statement

Evaluate each of the following integrals using trigonometric substitutions: (a) ∫(√(x² + 4x + 3)/(x + 2)) dx, (b) ∫(dx / (x³√(x² - 4))), (c) ∫(dx / (x² - 2x + 5)²), (d) ∫(x dx / (9 - x²)^(3/2))

Solution

Let's evaluate these integrals using trigonometric substitution:


(a) x2+4x+3x+2dx\int \frac{\sqrt{x^2 + 4x + 3}}{x + 2} \, dx

We begin by simplifying the square root expression. Complete the square inside the square root:

x2+4x+3=(x+2)21x^2 + 4x + 3 = (x + 2)^2 - 1

Thus, the integral becomes:

(x+2)21x+2dx\int \frac{\sqrt{(x + 2)^2 - 1}}{x + 2} \, dx

Now, let’s use the substitution x+2=sec(θ)x + 2 = \sec(\theta), which implies dx=sec(θ)tan(θ)dθdx = \sec(\theta)\tan(\theta)\, d\theta. Substituting this into the integral:

sec2(θ)1sec(θ)sec(θ)tan(θ)dθ=tan(θ)sec(θ)sec(θ)tan(θ)dθ=tan2(θ)dθ\int \frac{\sqrt{\sec^2(\theta) - 1}}{\sec(\theta)} \cdot \sec(\theta)\tan(\theta) \, d\theta = \int \frac{\tan(\theta)}{\sec(\theta)} \cdot \sec(\theta)\tan(\theta) \, d\theta = \int \tan^2(\theta) \, d\theta

Solve this using the identity tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1.


(b) dxx3x24\int \frac{dx}{x^3\sqrt{x^2 - 4}}

Here, we can use the substitution x=2sec(θ)x = 2\sec(\theta), so that dx=2sec(θ)tan(θ)dθdx = 2\sec(\theta)\tan(\theta)\, d\theta and x24=2tan(θ)\sqrt{x^2 - 4} = 2\tan(\theta). Substituting into the integral:

2sec(θ)tan(θ)8sec3(θ)tan(θ)dθ=14dθsec2(θ)\int \frac{2\sec(\theta)\tan(\theta)}{8\sec^3(\theta)\tan(\theta)} \, d\theta = \frac{1}{4} \int \frac{d\theta}{\sec^2(\theta)}

Since 1sec2(θ)=cos2(θ)\frac{1}{\sec^2(\theta)} = \cos^2(\theta), integrate to get:

14cos(θ)dθ\frac{1}{4} \int \cos(\theta)\, d\theta


(c) dx(x22x+5)2\int \frac{dx}{(x^2 - 2x + 5)^2}

Complete the square for the quadratic:

x22x+5=(x1)2+4x^2 - 2x + 5 = (x - 1)^2 + 4

Now, use the substitution x1=2tan(θ)x - 1 = 2\tan(\theta), so dx=2sec2(θ)dθdx = 2\sec^2(\theta)\, d\theta. This simplifies the integral to:

2sec2(θ)16sec4(θ)dθ=18cos2(θ)dθ\int \frac{2\sec^2(\theta)}{16\sec^4(\theta)} \, d\theta = \frac{1}{8} \int \cos^2(\theta) \, d\theta

Solve using standard trigonometric identities.


(d) xdx(9x2)3/2\int \frac{x\, dx}{(9 - x^2)^{3/2}}

Use the substitution x=3sin(θ)x = 3\sin(\theta), so that dx=3cos(θ)dθdx = 3\cos(\theta)\, d\theta and 9x2=9cos2(θ)9 - x^2 = 9\cos^2(\theta). Substituting into the integral:

3sin(θ)3cos(θ)dθ(9cos2(θ))3/2=9sin(θ)cos(θ)dθ27cos3(θ)=13tan(θ)dθ\int \frac{3\sin(\theta) \cdot 3\cos(\theta)\, d\theta}{(9\cos^2(\theta))^{3/2}} = \int \frac{9\sin(\theta)\cos(\theta)\, d\theta}{27\cos^3(\theta)} = \frac{1}{3} \int \tan(\theta) \, d\theta


Would you like further details on these steps? Here are some related questions to deepen your understanding:

  1. What is the general approach for completing the square in integrals?
  2. How does trigonometric substitution simplify integrals involving square roots?
  3. Can trigonometric identities be used to simplify any integral?
  4. How do you recognize when to use trigonometric substitution?
  5. What are common challenges in solving integrals with trigonometric substitution?

Tip: Always check for opportunities to simplify the integrand before applying substitutions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric substitution
Integral calculus
Completing the square
Trigonometric identities

Formulas

∫ sec²(θ) dθ = tan(θ)
Trigonometric identities like tan²(θ) = sec²(θ) - 1
x = a sec(θ), dx = a sec(θ)tan(θ) dθ
x = a sin(θ), dx = a cos(θ) dθ

Theorems

Trigonometric substitution for integrals involving square roots
Completing the square for quadratic expressions

Suitable Grade Level

College-level calculus