Math Problem Statement

Use formulas of addition or subtraction to write the given trigonometric expressions as a single function and find their exact values for Problems 15-18.

Solution

To solve these exercises, we’ll apply trigonometric addition and subtraction formulas to rewrite each expression as a single trigonometric function. I'll go through each one in order.

Problem 15

Expression: sin18cos27+cos18sin27\sin 18^\circ \cos 27^\circ + \cos 18^\circ \sin 27^\circ

This is in the form of the sine addition formula: sinAcosB+cosAsinB=sin(A+B)\sin A \cos B + \cos A \sin B = \sin(A + B) Thus, sin18cos27+cos18sin27=sin(18+27)=sin45\sin 18^\circ \cos 27^\circ + \cos 18^\circ \sin 27^\circ = \sin(18^\circ + 27^\circ) = \sin 45^\circ Since sin45=22\sin 45^\circ = \frac{\sqrt{2}}{2}, the exact value is: 22\frac{\sqrt{2}}{2}

Problem 16

Expression: cos10cos80sin10sin80\cos 10^\circ \cos 80^\circ - \sin 10^\circ \sin 80^\circ

This matches the cosine subtraction formula: cosAcosBsinAsinB=cos(A+B)\cos A \cos B - \sin A \sin B = \cos(A + B) Therefore, cos10cos80sin10sin80=cos(10+80)=cos90\cos 10^\circ \cos 80^\circ - \sin 10^\circ \sin 80^\circ = \cos(10^\circ + 80^\circ) = \cos 90^\circ Since cos90=0\cos 90^\circ = 0, the exact value is: 00

Problem 17

Expression: cos3π7cos2π21+sin3π7sin2π21\cos \frac{3\pi}{7} \cos \frac{2\pi}{21} + \sin \frac{3\pi}{7} \sin \frac{2\pi}{21}

This is in the form of the cosine addition formula: cosAcosB+sinAsinB=cos(AB)\cos A \cos B + \sin A \sin B = \cos(A - B) Thus, cos3π7cos2π21+sin3π7sin2π21=cos(3π72π21)\cos \frac{3\pi}{7} \cos \frac{2\pi}{21} + \sin \frac{3\pi}{7} \sin \frac{2\pi}{21} = \cos\left(\frac{3\pi}{7} - \frac{2\pi}{21}\right) Now, finding a common denominator for 3π7\frac{3\pi}{7} and 2π21\frac{2\pi}{21}: 3π7=9π21,2π21=2π21\frac{3\pi}{7} = \frac{9\pi}{21}, \quad \frac{2\pi}{21} = \frac{2\pi}{21} So, 3π72π21=9π2π21=7π21=π3\frac{3\pi}{7} - \frac{2\pi}{21} = \frac{9\pi - 2\pi}{21} = \frac{7\pi}{21} = \frac{\pi}{3} Therefore, cos3π7cos2π21+sin3π7sin2π21=cosπ3\cos \frac{3\pi}{7} \cos \frac{2\pi}{21} + \sin \frac{3\pi}{7} \sin \frac{2\pi}{21} = \cos \frac{\pi}{3} Since cosπ3=12\cos \frac{\pi}{3} = \frac{1}{2}, the exact value is: 12\frac{1}{2}

Problem 18

Expression: tanπ18+tanπ91tanπ18tanπ9\frac{\tan \frac{\pi}{18} + \tan \frac{\pi}{9}}{1 - \tan \frac{\pi}{18} \tan \frac{\pi}{9}}

This matches the tangent addition formula: tanA+tanB1tanAtanB=tan(A+B)\frac{\tan A + \tan B}{1 - \tan A \tan B} = \tan(A + B) Thus, tanπ18+tanπ91tanπ18tanπ9=tan(π18+π9)\frac{\tan \frac{\pi}{18} + \tan \frac{\pi}{9}}{1 - \tan \frac{\pi}{18} \tan \frac{\pi}{9}} = \tan\left(\frac{\pi}{18} + \frac{\pi}{9}\right) Finding a common denominator for π18\frac{\pi}{18} and π9\frac{\pi}{9}: π18+π9=π18+2π18=3π18=π6\frac{\pi}{18} + \frac{\pi}{9} = \frac{\pi}{18} + \frac{2\pi}{18} = \frac{3\pi}{18} = \frac{\pi}{6} Therefore, tanπ18+tanπ91tanπ18tanπ9=tanπ6\frac{\tan \frac{\pi}{18} + \tan \frac{\pi}{9}}{1 - \tan \frac{\pi}{18} \tan \frac{\pi}{9}} = \tan \frac{\pi}{6} Since tanπ6=13\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}, the exact value is: 13\frac{1}{\sqrt{3}}

Would you like further details on any step, or do you have additional questions?

Here are some related questions you may find helpful:

  1. How do we derive the sine addition formula?
  2. Can we apply the tangent addition formula to larger expressions?
  3. What are other methods to simplify trigonometric expressions?
  4. How do these formulas apply in real-world situations?
  5. Why is it useful to know exact values for common angles?

Tip: Memorizing the exact values for common angles like 3030^\circ, 4545^\circ, and 6060^\circ can make trigonometric simplifications much easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Addition and Subtraction Formulas
Exact Trigonometric Values

Formulas

Sine Addition Formula: sin(A + B) = sin A cos B + cos A sin B
Cosine Subtraction Formula: cos(A + B) = cos A cos B - sin A sin B
Cosine Addition Formula: cos(A - B) = cos A cos B + sin A sin B
Tangent Addition Formula: tan(A + B) = (tan A + tan B) / (1 - tan A tan B)

Theorems

Trigonometric Identity

Suitable Grade Level

Grades 10-12