Math Problem Statement

Given sin(θ) = 3/5 and θ is in the second quadrant, find (a) cos(θ), (b) tan(θ), (c) sec(θ). Also, simplify sin(2x) + cos(2x) using double-angle identities.

Solution

Let's solve the problems from the image step by step.


Problem 5:

Given sin(θ)=35\sin(\theta) = \frac{3}{5} and θ\theta is in the second quadrant, find:
(a) cos(θ)\cos(\theta), (b) tan(θ)\tan(\theta), (c) sec(θ)\sec(\theta).

Solution:

  1. Use the Pythagorean identity:
    sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1
    Substitute sin(θ)=35\sin(\theta) = \frac{3}{5}:
    (35)2+cos2(θ)=1\left(\frac{3}{5}\right)^2 + \cos^2(\theta) = 1
    925+cos2(θ)=1\frac{9}{25} + \cos^2(\theta) = 1
    cos2(θ)=1925=1625\cos^2(\theta) = 1 - \frac{9}{25} = \frac{16}{25}
    cos(θ)=±45\cos(\theta) = \pm \frac{4}{5}
    Since θ\theta is in the second quadrant, cos(θ)<0\cos(\theta) < 0:
    cos(θ)=45.\cos(\theta) = -\frac{4}{5}.

  2. Find tan(θ)\tan(\theta):
    tan(θ)=sin(θ)cos(θ)=3545=34.\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}.

  3. Find sec(θ)\sec(\theta):
    sec(θ)=1cos(θ)=145=54.\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{-\frac{4}{5}} = -\frac{5}{4}.


Final Answers for Problem 5:

(a) cos(θ)=45\cos(\theta) = -\frac{4}{5}
(b) tan(θ)=34\tan(\theta) = -\frac{3}{4}
(c) sec(θ)=54\sec(\theta) = -\frac{5}{4}


Problem 6:

Simplify sin(2x)+cos(2x)\sin(2x) + \cos(2x) using double-angle identities.

Solution:

  1. Recall the double-angle identities:
    sin(2x)=2sin(x)cos(x),cos(2x)=cos2(x)sin2(x).\sin(2x) = 2\sin(x)\cos(x), \quad \cos(2x) = \cos^2(x) - \sin^2(x).

  2. Substitute into the given expression:
    sin(2x)+cos(2x)=2sin(x)cos(x)+(cos2(x)sin2(x)).\sin(2x) + \cos(2x) = 2\sin(x)\cos(x) + (\cos^2(x) - \sin^2(x)).

  3. Rearrange and simplify:
    Combine cos2(x)sin2(x)+2sin(x)cos(x)\cos^2(x) - \sin^2(x) + 2\sin(x)\cos(x):
    This becomes:
    (cos(x)+sin(x))21(\cos(x) + \sin(x))^2 - 1
    Using the square expansion and simplifications.

  4. The simplified form is:
    (cos(x)+sin(x))21.(\cos(x) + \sin(x))^2 - 1.


Would you like detailed steps on Problem 6 or help with any concept?


Related Questions:

  1. How do trigonometric functions change in other quadrants?
  2. What are alternative forms of double-angle identities?
  3. Why does the sign of cos(θ)\cos(\theta) change in the second quadrant?
  4. How can (cos(x)+sin(x))2(\cos(x) + \sin(x))^2 be expanded explicitly?
  5. How do you derive double-angle identities from basic trigonometric principles?

Tip:

Always check the quadrant of the angle to determine the correct sign of trigonometric values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Pythagorean Identity
Double-Angle Identities

Formulas

sin^2(θ) + cos^2(θ) = 1
tan(θ) = sin(θ)/cos(θ)
sec(θ) = 1/cos(θ)
sin(2x) = 2sin(x)cos(x)
cos(2x) = cos^2(x) - sin^2(x)

Theorems

Pythagorean Identity
Double-Angle Identity

Suitable Grade Level

Grade 10-12