Math Problem Statement

Find the values of the trigonometric functions of ๐œƒ from the information given. cos(๐œƒ) = 6/13,sin(๐œƒ) < 0

Solution

Given that cosโก(ฮธ)=613\cos(\theta) = \frac{6}{13} and sinโก(ฮธ)<0\sin(\theta) < 0, we can determine the values of the trigonometric functions of ฮธ\theta.

Step 1: Determine the quadrant

  • cosโก(ฮธ)>0\cos(\theta) > 0 (positive).
  • sinโก(ฮธ)<0\sin(\theta) < 0 (negative).

These conditions indicate that ฮธ\theta is in the fourth quadrant.

Step 2: Find sinโก(ฮธ)\sin(\theta)

We use the Pythagorean identity: sinโก2(ฮธ)+cosโก2(ฮธ)=1\sin^2(\theta) + \cos^2(\theta) = 1 Substitute cosโก(ฮธ)=613\cos(\theta) = \frac{6}{13}: sinโก2(ฮธ)+(613)2=1\sin^2(\theta) + \left(\frac{6}{13}\right)^2 = 1 sinโก2(ฮธ)+36169=1\sin^2(\theta) + \frac{36}{169} = 1 sinโก2(ฮธ)=1โˆ’36169\sin^2(\theta) = 1 - \frac{36}{169} sinโก2(ฮธ)=169169โˆ’36169=133169\sin^2(\theta) = \frac{169}{169} - \frac{36}{169} = \frac{133}{169} sinโก(ฮธ)=ยฑ133169=ยฑ13313\sin(\theta) = \pm\sqrt{\frac{133}{169}} = \pm\frac{\sqrt{133}}{13}

Since sinโก(ฮธ)<0\sin(\theta) < 0 (in the fourth quadrant): sinโก(ฮธ)=โˆ’13313\sin(\theta) = -\frac{\sqrt{133}}{13}

Step 3: Find tanโก(ฮธ)\tan(\theta)

tanโก(ฮธ)=sinโก(ฮธ)cosโก(ฮธ)=โˆ’13313613=โˆ’1336\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{-\frac{\sqrt{133}}{13}}{\frac{6}{13}} = -\frac{\sqrt{133}}{6}

Step 4: Find cscโก(ฮธ)\csc(\theta), secโก(ฮธ)\sec(\theta), and cotโก(ฮธ)\cot(\theta)

cscโก(ฮธ)=1sinโก(ฮธ)=โˆ’13133\csc(\theta) = \frac{1}{\sin(\theta)} = -\frac{13}{\sqrt{133}} secโก(ฮธ)=1cosโก(ฮธ)=136\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{13}{6} cotโก(ฮธ)=1tanโก(ฮธ)=โˆ’6133\cot(\theta) = \frac{1}{\tan(\theta)} = -\frac{6}{\sqrt{133}}

Summary of Trigonometric Functions

  • cosโก(ฮธ)=613\cos(\theta) = \frac{6}{13}
  • sinโก(ฮธ)=โˆ’13313\sin(\theta) = -\frac{\sqrt{133}}{13}
  • tanโก(ฮธ)=โˆ’1336\tan(\theta) = -\frac{\sqrt{133}}{6}
  • cscโก(ฮธ)=โˆ’13133\csc(\theta) = -\frac{13}{\sqrt{133}}
  • secโก(ฮธ)=136\sec(\theta) = \frac{13}{6}
  • cotโก(ฮธ)=โˆ’6133\cot(\theta) = -\frac{6}{\sqrt{133}}

Would you like more details or have any questions?

Related Questions

  1. How can we use the unit circle to determine trigonometric function values?
  2. What is the significance of the sign of sine in different quadrants?
  3. How can we find the exact value of trigonometric functions for common angles?
  4. Can we solve for ฮธ\theta given one trigonometric function value?
  5. How do the Pythagorean identities relate to trigonometric functions?

Tip

Always remember the ASTC rule (All Students Take Calculus) to determine the sign of trigonometric functions in different quadrants.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadrants
Pythagorean Identity

Formulas

Pythagorean identity: sin^2(๐œƒ) + cos^2(๐œƒ) = 1
tan(๐œƒ) = sin(๐œƒ) / cos(๐œƒ)
csc(๐œƒ) = 1 / sin(๐œƒ)
sec(๐œƒ) = 1 / cos(๐œƒ)
cot(๐œƒ) = 1 / tan(๐œƒ)

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 9-12