Math Problem Statement

Analyze the functions f(x) = 2cos(x) and g(x) = -cos(x) on the interval [0°, 360°] and solve the following: 1. What is the amplitude of f(x)? 2. What is the period of g(x)? 3. Determine the length of EF when OE = 315°. 4. Graphically determine the values of x for: a. f(x) ≥ g(x), b. f(x) = 2, c. f(x) is increasing.

Solution

Let's analyze and solve the problem in the image.


Given Details:

  1. The functions f(x)=2cosxf(x) = 2\cos x and g(x)=cosxg(x) = -\cos x are graphed for x[0,360]x \in [0^\circ, 360^\circ].
  2. Questions to answer:
    1. Amplitude of f(x)f(x).
    2. Period of g(x)g(x).
    3. Length of segment EFEF if OE=315OE = 315^\circ.
    4. xx values for:
      1. f(x)g(x)f(x) \geq g(x),
      2. f(x)=2f(x) = 2,
      3. f(x)f(x) is increasing.

Solution:

1. Amplitude of f(x)f(x):

The amplitude of a trigonometric function AcosxA\cos x is the coefficient of cosx\cos x, i.e., A|A|.

  • For f(x)=2cosxf(x) = 2\cos x, the amplitude is: Amplitude=2=2.\text{Amplitude} = |2| = 2.

2. Period of g(x)g(x):

The period of Acos(Bx)A\cos(Bx) or Asin(Bx)A\sin(Bx) is given by 360B\frac{360^\circ}{|B|}.

  • For g(x)=cosxg(x) = -\cos x, B=1B = 1, so the period is: Period=3601=360.\text{Period} = \frac{360^\circ}{1} = 360^\circ.

3. Length of segment EFEF for OE=315OE = 315^\circ:

  • At x=315x = 315^\circ, calculate f(315)f(315^\circ) and g(315)g(315^\circ):
    • f(315)=2cos(315)=2(22)=2f(315^\circ) = 2\cos(315^\circ) = 2\left(\frac{\sqrt{2}}{2}\right) = \sqrt{2}.
    • g(315)=cos(315)=(22)=22g(315^\circ) = -\cos(315^\circ) = -\left(\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2}.
  • The vertical distance EF=f(315)g(315)EF = f(315^\circ) - g(315^\circ): EF=2(22)=2+22=222+22=322.EF = \sqrt{2} - \left(-\frac{\sqrt{2}}{2}\right) = \sqrt{2} + \frac{\sqrt{2}}{2} = \frac{2\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}.

4. Graphical solutions for xx:

4.4.1. f(x)g(x)f(x) \geq g(x):
  • f(x)=2cosxf(x) = 2\cos x, g(x)=cosxg(x) = -\cos x.
  • Solve 2cosxcosx2\cos x \geq -\cos x: 3cosx0cosx0.3\cos x \geq 0 \quad \Rightarrow \quad \cos x \geq 0.
  • cosx0\cos x \geq 0 in [0,360][0^\circ, 360^\circ] occurs in: [ x \in [0^\circ, 90^\circ] \cup [270^\circ, 360^\circ]. ]
4.4.2. f(x)=2f(x) = 2:
  • Solve 2cosx=22\cos x = 2: cosx=1.\cos x = 1.
  • cosx=1\cos x = 1 at: x=0.x = 0^\circ.
4.4.3. f(x)f(x) is increasing:
  • For f(x)=2cosxf(x) = 2\cos x, the derivative f(x)=2sinxf'(x) = -2\sin x.
  • f(x)f(x) is increasing when f(x)>0f'(x) > 0: 2sinx>0sinx<0.-2\sin x > 0 \quad \Rightarrow \quad \sin x < 0.
  • sinx<0\sin x < 0 in [0,360][0^\circ, 360^\circ] occurs in: x[180,360].x \in [180^\circ, 360^\circ].

Final Answers:

  1. Amplitude of f(x)f(x): 22.
  2. Period of g(x)g(x): 360360^\circ.
  3. Length of EFEF for OE=315OE = 315^\circ: 322\frac{3\sqrt{2}}{2}.
  4. xx-values:
    1. f(x)g(x)f(x) \geq g(x): [0,90][270,360][0^\circ, 90^\circ] \cup [270^\circ, 360^\circ].
    2. f(x)=2f(x) = 2: 00^\circ.
    3. f(x)f(x) is increasing: [180,360][180^\circ, 360^\circ].

Would you like a detailed explanation for any part? Here are some related questions:

  1. What is the formula to find the amplitude of a trigonometric function?
  2. How do you determine where a trigonometric function is increasing or decreasing?
  3. What are the applications of periodicity in trigonometric graphs?
  4. How can one visualize the differences between f(x)f(x) and g(x)g(x) graphically?
  5. What role does the derivative play in identifying increasing or decreasing intervals?

Tip: Always sketch a quick graph for clarity when solving trigonometric equations graphically!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Functions
Amplitude and Period
Graphical Analysis
Derivatives and Increasing/Decreasing Functions

Formulas

Amplitude of f(x) = |A| for A cos(x)
Period of f(x) = 360° / |B| for A cos(Bx)
Trigonometric Values: cos(315°) = √2/2
Derivative of cos(x): f'(x) = -sin(x)

Theorems

Graphical Solutions for Inequalities
Periodic Properties of Trigonometric Functions

Suitable Grade Level

Grade 10