Math Problem Statement

Given that tan(90° − θ) = 1/2, find the value of (sin(90° − θ) / (1 − tan(θ))) + 2cos(90° − θ).

Solution

Let's solve the problem step by step.

Problem:

Given tan(90θ)=12\tan(90^\circ - \theta) = \frac{1}{2}, find the value of: sin(90θ)1tanθ+2cos(90θ).\frac{\sin(90^\circ - \theta)}{1 - \tan\theta} + 2\cos(90^\circ - \theta).

Step 1: Trigonometric Identities

  1. Identity for tan(90θ)\tan(90^\circ - \theta): tan(90θ)=cot(θ).\tan(90^\circ - \theta) = \cot(\theta). So, cot(θ)=12\cot(\theta) = \frac{1}{2}.

  2. Relationship between cotθ\cot\theta and tanθ\tan\theta: tan(θ)=1cot(θ)=2.\tan(\theta) = \frac{1}{\cot(\theta)} = 2.

  3. Sine and Cosine for 90θ90^\circ - \theta:

    • sin(90θ)=cos(θ)\sin(90^\circ - \theta) = \cos(\theta),
    • cos(90θ)=sin(θ)\cos(90^\circ - \theta) = \sin(\theta).

Step 2: Expressing sin(θ)\sin(\theta) and cos(θ)\cos(\theta)

From the Pythagorean identity: 1+cot2(θ)=csc2(θ).1 + \cot^2(\theta) = \csc^2(\theta). Using cot(θ)=12\cot(\theta) = \frac{1}{2}: 1+(12)2=csc2(θ).1 + \left(\frac{1}{2}\right)^2 = \csc^2(\theta). csc2(θ)=1+14=54.\csc^2(\theta) = 1 + \frac{1}{4} = \frac{5}{4}. csc(θ)=54=52.\csc(\theta) = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}. Since csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}, we have: sin(θ)=25.\sin(\theta) = \frac{2}{\sqrt{5}}. Using cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta): cos2(θ)=1(25)2=145=15.\cos^2(\theta) = 1 - \left(\frac{2}{\sqrt{5}}\right)^2 = 1 - \frac{4}{5} = \frac{1}{5}. cos(θ)=15.\cos(\theta) = \frac{1}{\sqrt{5}}.

Step 3: Evaluate the Expression

Substitute sin(90θ)=cos(θ)\sin(90^\circ - \theta) = \cos(\theta) and cos(90θ)=sin(θ)\cos(90^\circ - \theta) = \sin(\theta) into the given expression: sin(90θ)1tan(θ)+2cos(90θ).\frac{\sin(90^\circ - \theta)}{1 - \tan(\theta)} + 2\cos(90^\circ - \theta). This becomes: cos(θ)1tan(θ)+2sin(θ).\frac{\cos(\theta)}{1 - \tan(\theta)} + 2\sin(\theta). Substitute tan(θ)=2\tan(\theta) = 2, cos(θ)=15\cos(\theta) = \frac{1}{\sqrt{5}}, and sin(θ)=25\sin(\theta) = \frac{2}{\sqrt{5}}: 1512+225.\frac{\frac{1}{\sqrt{5}}}{1 - 2} + 2\cdot\frac{2}{\sqrt{5}}. Simplify: 151+45.\frac{\frac{1}{\sqrt{5}}}{-1} + \frac{4}{\sqrt{5}}. 15+45=1+45=35.-\frac{1}{\sqrt{5}} + \frac{4}{\sqrt{5}} = \frac{-1 + 4}{\sqrt{5}} = \frac{3}{\sqrt{5}}.

Final Answer:

35 or 355 (rationalized).\boxed{\frac{3}{\sqrt{5}} \text{ or } \frac{3\sqrt{5}}{5} \text{ (rationalized)}.}

Would you like further details or assistance with another problem? Here are 5 questions to expand your understanding:

  1. How does tan(90θ)=cot(θ)\tan(90^\circ - \theta) = \cot(\theta) affect calculations?
  2. Why is rationalizing the denominator important in final answers?
  3. What are the applications of trigonometric identities like these in physics or engineering?
  4. How would the solution differ if tan(90θ)\tan(90^\circ - \theta) had a negative value?
  5. Can you generalize this method to solve for other trigonometric expressions?

Tip: Memorize the complementary angle identities (sin(90θ)=cos(θ)\sin(90^\circ - \theta) = \cos(\theta), etc.) to quickly transform such problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Ratios
Complementary Angle Identities
Pythagorean Identity

Formulas

tan(90° − θ) = cot(θ)
cot(θ) = 1/tan(θ)
sin²(θ) + cos²(θ) = 1
sin(90° − θ) = cos(θ)
cos(90° − θ) = sin(θ)

Theorems

Pythagorean Theorem
Trigonometric Identities

Suitable Grade Level

Grade 11-12 (Advanced Trigonometry)