Math Problem Statement

Pls solve

Pls solve the trigonometric expression: \frac{\cos 77^\circ}{\sin 13^\circ} + \cos^2 52^\circ + \cos^2 38^\circ - 3 \tan^2 45^\circ

Solution

The expression provided in the image is:

cos77sin13+cos252+cos2383tan245\frac{\cos 77^\circ}{\sin 13^\circ} + \cos^2 52^\circ + \cos^2 38^\circ - 3 \tan^2 45^\circ

Step 1: Trigonometric identities and simplifications

  1. Notice that:
    • cos77=sin13\cos 77^\circ = \sin 13^\circ (since cosθ=sin(90θ)\cos \theta = \sin (90^\circ - \theta)).
    • tan45=1\tan 45^\circ = 1, so tan245=1\tan^2 45^\circ = 1.

Now let's simplify each part of the expression:

cos77sin13=sin13sin13=1\frac{\cos 77^\circ}{\sin 13^\circ} = \frac{\sin 13^\circ}{\sin 13^\circ} = 1

Next, we can evaluate:

cos252+cos238\cos^2 52^\circ + \cos^2 38^\circ

Since cos2θ+cos2(90θ)=1\cos^2 \theta + \cos^2 (90^\circ - \theta) = 1, we have:

cos252+cos238=1\cos^2 52^\circ + \cos^2 38^\circ = 1

Finally, the term involving tan245\tan^2 45^\circ is:

3tan245=31=33 \cdot \tan^2 45^\circ = 3 \cdot 1 = 3

Step 2: Putting it all together

Now sum up all the terms:

1+13=11 + 1 - 3 = -1

Final Answer:

The value of the given expression is 1-1.

Would you like more details or have further questions?

Here are some related questions for practice:

  1. What is the value of tan(45)\tan(45^\circ) and why is it significant?
  2. How does the identity cosθ=sin(90θ)\cos \theta = \sin (90^\circ - \theta) simplify trigonometric expressions?
  3. Evaluate cos2(30)+sin2(30)\cos^2(30^\circ) + \sin^2(30^\circ) and explain the result.
  4. Can you apply the identity cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1 to different angles?
  5. What is the significance of the angle 4545^\circ in trigonometry?

Tip: Always check for identities like cosθ=sin(90θ)\cos \theta = \sin(90^\circ - \theta) in simplifying trigonometric expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric identities
Angle relationships

Formulas

\cos \theta = \sin (90^\circ - \theta)
\cos^2 \theta + \sin^2 \theta = 1
\tan 45^\circ = 1

Theorems

Trigonometric identities
Pythagorean identity

Suitable Grade Level

Grades 10-12