Math Problem Statement

Calculate the following limits: 1) lim(x→0) [(1 - cos x)/x^2], 2) lim(x→3) [(√(x + 6) - 3)/(√(x + 1) - 2)], 3) lim(x→0) [(e^x - e^(-x) - 2x)/(x - sin x)], 4) lim(x→0) [(5x - tan(4x))/x]

Solution

Here is the breakdown of solving the given limits step by step:


1. limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}

This is a standard limit problem. Using the trigonometric identity: 1cosx=2sin2(x2)1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) Substituting and simplifying: limx01cosxx2=limx02sin2(x2)x2\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x^2} =limx02(sin(x2)x2)24= \lim_{x \to 0} \frac{2 \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^2}{4} As x0,sin(x2)x21x \to 0, \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \to 1: Result: 24=12.\text{Result: } \frac{2}{4} = \frac{1}{2}.


2. limx3x+63x+12\lim_{x \to 3} \frac{\sqrt{x + 6} - 3}{\sqrt{x + 1} - 2}

To simplify, rationalize the numerator and denominator: limx3x+63x+12x+6+3x+1+2\lim_{x \to 3} \frac{\sqrt{x + 6} - 3}{\sqrt{x + 1} - 2} \cdot \frac{\sqrt{x + 6} + 3}{\sqrt{x + 1} + 2} This gives: limx3(x+6)9(x+1)4x+6+3x+1+2\lim_{x \to 3} \frac{(x + 6) - 9}{(x + 1) - 4} \cdot \frac{\sqrt{x + 6} + 3}{\sqrt{x + 1} + 2} Simplify: limx3x3x3x+6+3x+1+2\lim_{x \to 3} \frac{x - 3}{x - 3} \cdot \frac{\sqrt{x + 6} + 3}{\sqrt{x + 1} + 2} Cancel x3x - 3: Result: 3+6+33+1+2=3+32+2=64=32.\text{Result: } \frac{\sqrt{3 + 6} + 3}{\sqrt{3 + 1} + 2} = \frac{3 + 3}{2 + 2} = \frac{6}{4} = \frac{3}{2}.


3. limx0exex2xxsinx\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}

Using Taylor expansions for small xx: ex=1+x+x22+,ex=1x+x22e^x = 1 + x + \frac{x^2}{2} + \dots, \quad e^{-x} = 1 - x + \frac{x^2}{2} - \dots sinx=xx36+\sin x = x - \frac{x^3}{6} + \dots Substitute these expansions: exex=2x+2x36,xsinx=x36.e^x - e^{-x} = 2x + \frac{2x^3}{6}, \quad x - \sin x = \frac{x^3}{6}. The numerator becomes: (exex2x)=2x36,xsinx=x36.(e^x - e^{-x} - 2x) = \frac{2x^3}{6}, \quad x - \sin x = \frac{x^3}{6}. Simplify: 2x36x36=2.\frac{\frac{2x^3}{6}}{\frac{x^3}{6}} = 2. Result: 2.\text{Result: } 2.


4. limx05xtan4xx\lim_{x \to 0} \frac{5x - \tan 4x}{x}

Using the Taylor expansion for tan4x\tan 4x for small xx: tan4x=4x+(4x)33+\tan 4x = 4x + \frac{(4x)^3}{3} + \dots The numerator becomes: 5xtan4x=5x(4x+64x33)=x64x33.5x - \tan 4x = 5x - (4x + \frac{64x^3}{3}) = x - \frac{64x^3}{3}. Divide by xx: 5xtan4xx=164x23.\frac{5x - \tan 4x}{x} = 1 - \frac{64x^2}{3}. As x0x \to 0: Result: 1.\text{Result: } 1.


Do you need further steps or clarifications?

Here are some follow-up questions for practice:

  1. Can you find the derivative of f(x)=1cosxx2f(x) = \frac{1 - \cos x}{x^2} at x=0x = 0?
  2. How does rationalizing help simplify limits involving square roots?
  3. Can you generalize the Taylor series for tan(kx)\tan(kx) to approximate similar limits?
  4. What happens if the numerator and denominator of a limit both tend to infinity? Which rule applies?
  5. How do expansions help to find limits in indeterminate forms like 00\frac{0}{0}?

Tip: Always test for indeterminate forms (00\frac{0}{0}, /\infty/\infty) before applying rules like L'Hôpital's Rule!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometry
Taylor Series Expansion
Indeterminate Forms
L'Hôpital's Rule

Formulas

1 - cos(x) = 2sin^2(x/2)
Taylor series for e^x, e^(-x), sin(x)
Limit properties for indeterminate forms

Theorems

L'Hôpital's Rule
Taylor Series Expansion

Suitable Grade Level

Grades 11-12, Calculus I