Math Problem Statement

Solve the following equations: 1. 2 sin^2(x) - sin(x) - 1 = 0 - Find all solutions for 0 ≤ x < 2π. 2. √3 tan(θ) - 2 sin(θ) cos(θ) = 0 - Find all solutions for 0° ≤ θ < 360°.

Solution

Let's solve each of the problems one by one:

Problem 14: 2sin2xsinx1=02 \sin^2 x - \sin x - 1 = 0

This equation is a trigonometric quadratic equation in terms of sinx\sin x. Let u=sinxu = \sin x, so the equation becomes:

2u2u1=02u^2 - u - 1 = 0

Step 1: Solving the Quadratic Equation

This can be factored or solved using the quadratic formula. Using the quadratic formula:

u=(1)±(1)242(1)22=1±1+84=1±34u = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4}

This gives us two solutions for uu:

  1. u=1+34=1u = \frac{1 + 3}{4} = 1
  2. u=134=12u = \frac{1 - 3}{4} = -\frac{1}{2}

Since u=sinxu = \sin x, we have:

  1. sinx=1\sin x = 1
  2. sinx=12\sin x = -\frac{1}{2}

Step 2: Finding All Solutions

  1. For sinx=1\sin x = 1:

    • x=π2+2πkx = \frac{\pi}{2} + 2\pi k for any integer kk.
  2. For sinx=12\sin x = -\frac{1}{2}:

    • The solutions for xx are x=7π6+2πkx = \frac{7\pi}{6} + 2\pi k and x=11π6+2πkx = \frac{11\pi}{6} + 2\pi k, where kk is any integer.

So, the general solutions for all values of xx are:

x=π2+2πk,x=7π6+2πk,x=11π6+2πkx = \frac{\pi}{2} + 2\pi k, \quad x = \frac{7\pi}{6} + 2\pi k, \quad x = \frac{11\pi}{6} + 2\pi k

Step 3: Finding Solutions in the Interval 0x<2π0 \leq x < 2\pi

For 0x<2π0 \leq x < 2\pi, we only consider:

x=π2,x=7π6,x=11π6x = \frac{\pi}{2}, \quad x = \frac{7\pi}{6}, \quad x = \frac{11\pi}{6}

Problem 15: 3tanθ2sinθcosθ=0\sqrt{3} \tan \theta - 2 \sin \theta \cos \theta = 0

Rewrite the second term using the double-angle identity: sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta. The equation becomes:

3tanθsin2θ=0\sqrt{3} \tan \theta - \sin 2\theta = 0

Dividing both sides by cosθ\cos \theta, we get:

3sin2θ=0\sqrt{3} - \sin 2\theta = 0

Let’s proceed with

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations
Trigonometric Identities

Formulas

Quadratic formula: ax^2 + bx + c = 0
Trigonometric identity: sin^2(x) + cos^2(x) = 1
Double angle identity: sin(2θ) = 2sin(θ)cos(θ)

Theorems

Quadratic formula
Trigonometric identities

Suitable Grade Level

Grades 10-12