Math Problem Statement

In triangle $PQR,$ $M$ is the midpoint of $\overline{PQ}.$ Let $X$ be the point on $\overline{QR}$ such that $\overline{PX}$ bisects $\angle QPR,$ and let the perpendicular bisector of $\overline{PQ}$ intersect $\overline{PX}$ at $Y.$ If $PQ = 28,$ $PR = 16,$ and $MY = 5,$ then find the area of triangle $PYR.$

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Triangle Properties
Area Calculation
Angle Bisector Theorem
Perpendicular Bisector

Formulas

Area of a triangle = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
Midpoint formula: M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)

Theorems

Angle Bisector Theorem
Properties of Perpendicular Bisectors

Suitable Grade Level

Grades 10-12