Math Problem Statement

find the area of a triangle ABC if coordinates of A( 30,22.5),B(17.5,35.625) and C (17.5,13.125)

Solution

To find the area of a triangle given the coordinates of its vertices, we use the coordinate geometry formula:

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|

Step 1: Assigning the coordinates

  • A(30,22.5)A(30, 22.5)
  • B(17.5,35.625)B(17.5, 35.625)
  • C(17.5,13.125)C(17.5, 13.125)

Let:

  • (x1,y1)=(30,22.5)(x_1, y_1) = (30, 22.5)
  • (x2,y2)=(17.5,35.625)(x_2, y_2) = (17.5, 35.625)
  • (x3,y3)=(17.5,13.125)(x_3, y_3) = (17.5, 13.125)

Step 2: Apply the formula

Area=1230(35.62513.125)+17.5(13.12522.5)+17.5(22.535.625)\text{Area} = \frac{1}{2} \left| 30(35.625 - 13.125) + 17.5(13.125 - 22.5) + 17.5(22.5 - 35.625) \right|

First, calculate the individual terms inside the absolute value:

35.62513.125=22.535.625 - 13.125 = 22.5 13.12522.5=9.37513.125 - 22.5 = -9.375 22.535.625=13.12522.5 - 35.625 = -13.125

Now substitute these results into the formula:

Area=1230(22.5)+17.5(9.375)+17.5(13.125)\text{Area} = \frac{1}{2} \left| 30(22.5) + 17.5(-9.375) + 17.5(-13.125) \right|

30(22.5)=675,17.5(9.375)=164.0625,17.5(13.125)=229.687530(22.5) = 675, \quad 17.5(-9.375) = -164.0625, \quad 17.5(-13.125) = -229.6875

Area=12675164.0625229.6875\text{Area} = \frac{1}{2} \left| 675 - 164.0625 - 229.6875 \right|

Area=12675393.75=12281.25\text{Area} = \frac{1}{2} \left| 675 - 393.75 \right| = \frac{1}{2} \left| 281.25 \right|

Area=12×281.25=140.625\text{Area} = \frac{1}{2} \times 281.25 = 140.625

Final Answer

The area of the triangle is:

140.625square units\boxed{140.625} \, \text{square units}


Do you have any questions or need further clarifications?


Here are some related questions:

  1. How is the coordinate formula for a triangle’s area derived?
  2. Can the area of a triangle be negative using coordinates?
  3. How do you calculate the centroid of a triangle with given vertices?
  4. What if one or more points are collinear—what will the area be?
  5. How does this method relate to determinants of matrices?

Tip: If the three points are collinear, the area will always be zero since they form a straight line.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Area of a Triangle

Formulas

Area of a triangle using coordinates: (1/2) * | x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2) |

Theorems

Coordinate Geometry Theorem for Triangle Area

Suitable Grade Level

Grades 9-11