Math Problem Statement

Solve

Find the area of the triangle determined by the points P, Q, and R. Find a unit vector perpendicular to plane PQR. Points: P(-2,2,1), Q(1,0,2), R(0,1,-2).

Solution

Problem Breakdown and Solution:

We are tasked with the following:

  1. Find the area of the triangle determined by the points P(2,2,1)P(-2, 2, 1), Q(1,0,2)Q(1, 0, 2), and R(0,1,2)R(0, 1, -2).
  2. Find a unit vector perpendicular to the plane PQRPQR.

Step 1: Vectors in the Plane

First, we find two vectors in the plane determined by the three points PP, QQ, and RR:

  • Vector PQ=QP\overrightarrow{PQ} = Q - P: PQ=(1(2),02,21)=(3,2,1)\overrightarrow{PQ} = (1 - (-2), 0 - 2, 2 - 1) = (3, -2, 1)

  • Vector PR=RP\overrightarrow{PR} = R - P: PR=(0(2),12,21)=(2,1,3)\overrightarrow{PR} = (0 - (-2), 1 - 2, -2 - 1) = (2, -1, -3)


Step 2: Cross Product of PQ\overrightarrow{PQ} and PR\overrightarrow{PR}

The cross product PQ×PR\overrightarrow{PQ} \times \overrightarrow{PR} gives a vector perpendicular to the plane. Calculate it using the determinant formula:

\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -2 & 1 \\ 2 & -1 & -3 \end{vmatrix}$$ Expanding the determinant: $$\overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i} \begin{vmatrix} -2 & 1 \\ -1 & -3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & -2 \\ 2 & -1 \end{vmatrix}$$ 1. Compute each minor determinant: - $$\begin{vmatrix} -2 & 1 \\ -1 & -3 \end{vmatrix} = (-2)(-3) - (1)(-1) = 6 + 1 = 7$$ - $$\begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} = (3)(-3) - (1)(2) = -9 - 2 = -11$$ - $$\begin{vmatrix} 3 & -2 \\ 2 & -1 \end{vmatrix} = (3)(-1) - (-2)(2) = -3 + 4 = 1$$ 2. Substitute back: $$\overrightarrow{PQ} \times \overrightarrow{PR} = 7\mathbf{i} - (-11)\mathbf{j} + 1\mathbf{k}$$ $$\overrightarrow{PQ} \times \overrightarrow{PR} = 7\mathbf{i} + 11\mathbf{j} + \mathbf{k}$$ --- ### Step 3: Area of the Triangle The magnitude of the cross product is: $$\|\overrightarrow{PQ} \times \overrightarrow{PR}\| = \sqrt{7^2 + 11^2 + 1^2} = \sqrt{49 + 121 + 1} = \sqrt{171}$$ The area of the triangle is half the magnitude of the cross product: $$\text{Area} = \frac{1}{2} \|\overrightarrow{PQ} \times \overrightarrow{PR}\| = \frac{1}{2} \sqrt{171}$$ --- ### Step 4: Unit Vector Perpendicular to the Plane To find the unit vector, divide the cross product by its magnitude: $$\text{Unit Vector} = \frac{\overrightarrow{PQ} \times \overrightarrow{PR}}{\|\overrightarrow{PQ} \times \overrightarrow{PR}\|}$$ Substitute: $$\text{Unit Vector} = \frac{7\mathbf{i} + 11\mathbf{j} + \mathbf{k}}{\sqrt{171}}$$ This simplifies to: $$\text{Unit Vector} = \frac{7}{\sqrt{171}}\mathbf{i} + \frac{11}{\sqrt{171}}\mathbf{j} + \frac{1}{\sqrt{171}}\mathbf{k}$$ --- ### Final Answers: 1. **Area of the Triangle**: $$\frac{\sqrt{171}}{2}$$ 2. **Unit Vector Perpendicular to the Plane**: $$\frac{1}{\sqrt{171}}(7\mathbf{i} + 11\mathbf{j} + \mathbf{k})$$. Matching the options in the question, the correct choices are: - **Area**: $$\frac{\sqrt{171}}{2}$$ - **Unit Vector**: $$\frac{1}{\sqrt{171}}(7\mathbf{i} + 11\mathbf{j} + \mathbf{k})$$, corresponding to Option A. --- Do you have any questions or want further clarification? ### 5 Related Questions: 1. How is the cross product used to determine the perpendicularity of vectors? 2. Why is the magnitude of the cross product used to calculate the area of a triangle? 3. What is the geometric meaning of a unit vector? 4. How would the result change if the coordinates of one point were shifted? 5. Can this method be extended to compute areas of polygons in 3D? ### Tip: When working with cross products, always double-check determinant calculations for sign errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Cross Product
Unit Vector
Triangle Area in 3D

Formulas

Cross Product Formula: a × b = |i j k|
Triangle Area: Area = 1/2 * ||a × b||
Unit Vector: u = v / ||v||

Theorems

Properties of the Cross Product

Suitable Grade Level

College-level Mathematics