Math Problem Statement

Die Punktmenge G = {z ∈ C : 2 · Re(z) − 4 · Im(z) = 1} lässt sich auf die Form G = {z ∈ C : b · z + b̅ · z̅ = d} bringen, wobei b ∈ C und d ∈ R feste Zahlen sind.

Solution

To transform the given point set G={zC:2Re(z)4Im(z)=1}G = \{ z \in \mathbb{C} : 2 \cdot \operatorname{Re}(z) - 4 \cdot \operatorname{Im}(z) = 1 \} into the form G={zC:bz+bz=d}G = \{ z \in \mathbb{C} : b \cdot z + \overline{b} \cdot \overline{z} = d \}, let's proceed with the following steps.

Step 1: Expressing zz in terms of its real and imaginary components

Let z=x+iyz = x + iy, where:

  • x=Re(z)x = \operatorname{Re}(z) (the real part of zz)
  • y=Im(z)y = \operatorname{Im}(z) (the imaginary part of zz)

Thus, the equation 2Re(z)4Im(z)=12 \cdot \operatorname{Re}(z) - 4 \cdot \operatorname{Im}(z) = 1 can be rewritten in terms of xx and yy as: 2x4y=12x - 4y = 1

Step 2: Rewriting the equation in terms of zz and z\overline{z}

We know that: z=x+iyandz=xiyz = x + iy \quad \text{and} \quad \overline{z} = x - iy

From this, we can express xx and yy as: x=z+z2andy=zz2ix = \frac{z + \overline{z}}{2} \quad \text{and} \quad y = \frac{z - \overline{z}}{2i}

Step 3: Substitute xx and yy in the original equation

Substitute x=z+z2x = \frac{z + \overline{z}}{2} and y=zz2iy = \frac{z - \overline{z}}{2i} into 2x4y=12x - 4y = 1: 2z+z24zz2i=12 \cdot \frac{z + \overline{z}}{2} - 4 \cdot \frac{z - \overline{z}}{2i} = 1

Simplifying each term separately:

  • The first term becomes z+zz + \overline{z}.
  • The second term becomes 2izzi=2(zz)-2i \cdot \frac{z - \overline{z}}{i} = 2(z - \overline{z}).

Thus, the equation simplifies to: [ z + \overline

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Real and Imaginary Parts
Algebraic Manipulation

Formulas

z = x + iy
Re(z) = x, Im(z) = y
x = (z + z̅) / 2
y = (z - z̅) / (2i)

Theorems

-

Suitable Grade Level

Undergraduate