Math Problem Statement

pipe a kiski tank ko pipe a and pipe b dono ke sath chalanee pr 3 min. adhir leta h or pipe b usko pipe a and pipe b dono ke sath chalane 64/3 min adhik leta h bta pipe a or pipe b dono ek sath tank ko kitne min me brenge

Solution

Is prashn ko hum pipe A aur pipe B ki kaam karne ki dar ko samajhkar solve karenge. Aapke diye gaye information ke mutabik:

  • Pipe A aur Pipe B dono ko ek saath chalane se tank ko bharne ka samay 3 minute kam ho jata hai.
  • Pipe B ko Pipe A aur Pipe B dono ke saath chalane par 64/3 minute zyada samay lagta hai.

Yeh do equations ban rahi hain, jo hum solve karenge:

  1. Let the time taken by Pipe A to fill the tank alone be TAT_A minutes.
  2. Let the time taken by Pipe B to fill the tank alone be TBT_B minutes.

Step 1: First relationship

Jab Pipe A aur Pipe B dono kaam kar rahe hote hain, toh time TAT_A aur TBT_B se kam ho jata hai.

Mathematically, TATBTA+TB=TA3\frac{T_A \cdot T_B}{T_A + T_B} = T_A - 3 Yeh equation mein yeh dikhata hai ki dono pipes ko saath mein chalane par time TA3T_A - 3 minute ho jata hai.

Step 2: Second relationship

Jab pipe B ko alone chalane par, usko 64/3 minute extra time lagta hai. Toh, pipe B ko alone chalane par TBT_B ka samay TA+TB+643T_A + T_B + \frac{64}{3} ke barabar ho jata hai. TB=TA+TB+643T_B = T_A + T_B + \frac{64}{3}

Hum ab yeh dono equations solve karke TAT_A aur TBT_B nikalenge, jo dono pipes ko saath chalane ka samay bataenge.

Let me calculate that for you.Chaliye, hum yeh equations solve karte hain:

Step 1: Relationship between TAT_A and TBT_B

Aapne pehla equation diya tha: TATBTA+TB=TA3\frac{T_A \cdot T_B}{T_A + T_B} = T_A - 3 Isko simplify karte hain: TATB=(TA3)(TA+TB)T_A \cdot T_B = (T_A - 3) \cdot (T_A + T_B) TATB=TA2+TATB3TA3TBT_A \cdot T_B = T_A^2 + T_A \cdot T_B - 3T_A - 3T_B T_A \cdot T_B ko dono taraf se cancel kar denge: 0=TA23TA3TB0 = T_A^2 - 3T_A - 3T_B TA23TA=3TB(Equation 1)T_A^2 - 3T_A = 3T_B \quad \text{(Equation 1)}

Step 2: Second relationship

Aapne doosra equation diya tha: TB=TA+TB+643T_B = T_A + T_B + \frac{64}{3} Isko simplify karte hain: 0=TA+6430 = T_A + \frac{64}{3} TA=643(Equation 2)T_A = -\frac{64}{3} \quad \text{(Equation 2)} This equation gives a negative time value for TAT_A. This suggests that there might be a mistake in interpreting the problem. Let me go through it again.

Step 3: Let's clarify

Do you want me to try re-explaining?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Work and Time
Algebraic Equations
Fraction Simplification

Formulas

Work formula: Work = Rate × Time
Combined work formula: 1/T = 1/T1 + 1/T2
Equation simplification: ax + b = c

Theorems

Inverse Proportionality of Work and Time

Suitable Grade Level

Grades 9-12