Math Problem Statement

Given y = e^(-2x) ln(x), find d^3y/dx^3 by Leibniz's Theorem.

Solution

The question asks to compute the third derivative of y=e2xlnxy = e^{-2x} \ln x using Leibniz's Theorem. Here's the detailed solution:

Leibniz's Theorem

For two functions u(x)u(x) and v(x)v(x), the nn-th derivative of their product is given by: dndxn[u(x)v(x)]=k=0n(nk)u(k)(x)v(nk)(x)\frac{d^n}{dx^n}[u(x)v(x)] = \sum_{k=0}^n \binom{n}{k} u^{(k)}(x) v^{(n-k)}(x)

Apply this theorem:

Here y=e2xlnxy = e^{-2x} \ln x, so:

  • u(x)=e2xu(x) = e^{-2x}
  • v(x)=lnxv(x) = \ln x

We need the third derivative: d3ydx3\frac{d^3y}{dx^3}.

Step 1: Derivatives of u(x)=e2xu(x) = e^{-2x}

  1. u(x)=e2xu(x) = e^{-2x}
  2. First derivative: u(x)=2e2xu'(x) = -2e^{-2x}
  3. Second derivative: u(x)=4e2xu''(x) = 4e^{-2x}
  4. Third derivative: u(x)=8e2xu'''(x) = -8e^{-2x}

Step 2: Derivatives of v(x)=lnxv(x) = \ln x

  1. v(x)=lnxv(x) = \ln x
  2. First derivative: v(x)=1xv'(x) = \frac{1}{x}
  3. Second derivative: v(x)=1x2v''(x) = -\frac{1}{x^2}
  4. Third derivative: v(x)=2x3v'''(x) = \frac{2}{x^3}

Step 3: Apply Leibniz's Theorem for n=3n = 3

Using: d3dx3[u(x)v(x)]=k=03(3k)u(k)(x)v(3k)(x)\frac{d^3}{dx^3} [u(x) v(x)] = \sum_{k=0}^3 \binom{3}{k} u^{(k)}(x) v^{(3-k)}(x)

d3ydx3=u(0)(x)v(3)(x)+3u(1)(x)v(2)(x)+3u(2)(x)v(1)(x)+u(3)(x)v(0)(x)\frac{d^3y}{dx^3} = u^{(0)}(x) v^{(3)}(x) + 3 u^{(1)}(x) v^{(2)}(x) + 3 u^{(2)}(x) v^{(1)}(x) + u^{(3)}(x) v^{(0)}(x)

Substitute derivatives:

d3ydx3=e2x2x3+3(2e2x)(1x2)+3(4e2x)1x+(8e2x)lnx\frac{d^3y}{dx^3} = e^{-2x} \cdot \frac{2}{x^3} + 3(-2e^{-2x}) \cdot \left(-\frac{1}{x^2}\right) + 3(4e^{-2x}) \cdot \frac{1}{x} + (-8e^{-2x}) \cdot \ln x

Simplify each term:

  1. e2x2x3=2e2xx3e^{-2x} \cdot \frac{2}{x^3} = \frac{2e^{-2x}}{x^3}
  2. 3(2e2x)(1x2)=6e2xx23(-2e^{-2x}) \cdot \left(-\frac{1}{x^2}\right) = \frac{6e^{-2x}}{x^2}
  3. 3(4e2x)1x=12e2xx3(4e^{-2x}) \cdot \frac{1}{x} = \frac{12e^{-2x}}{x}
  4. (8e2x)lnx=8e2xlnx(-8e^{-2x}) \cdot \ln x = -8e^{-2x} \ln x

Combine terms: d3ydx3=2e2xx3+6e2xx2+12e2xx8e2xlnx\frac{d^3y}{dx^3} = \frac{2e^{-2x}}{x^3} + \frac{6e^{-2x}}{x^2} + \frac{12e^{-2x}}{x} - 8e^{-2x} \ln x

Final Answer:

d3ydx3=e2x(2x3+6x2+12x8lnx)\frac{d^3y}{dx^3} = e^{-2x} \left( \frac{2}{x^3} + \frac{6}{x^2} + \frac{12}{x} - 8\ln x \right)

Let me know if you'd like any part of this explained further or expanded!


Related Questions:

  1. How can Leibniz's theorem be generalized to higher derivatives?
  2. What are the practical applications of using e2xlnxe^{-2x} \ln x in differential equations?
  3. How does Leibniz's theorem simplify calculations compared to direct differentiation?
  4. Can you solve similar problems where yy involves trigonometric or exponential products?
  5. How does the behavior of yy change for very large or very small xx?

Tip: Always calculate derivatives of simpler terms like u(x)u(x) and v(x)v(x) beforehand to reduce errors in complex applications like Leibniz's theorem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Product Rule

Formulas

Leibniz's Theorem: d^n/dx^n [u(x)v(x)] = ∑(k=0 to n) (nCk) u^(k)(x) v^(n-k)(x)
Derivatives of e^(-2x) and ln(x)

Theorems

Leibniz's Theorem

Suitable Grade Level

Grades 11-12 or Undergraduate Calculus