Math Problem Statement

You are given two random samples with the information shown below. Use a significance level of 

0.05

0.05 for testing the hypothesis that 

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2

H0: σ21≤σ22.

Item

1

2

3

4

5   Sample 1

11.1

13.5

12.2

11.5

14.8

Sample 2

10.1

8.5

9.2

7.4

11.8

Question content area bottom

Part 1

State the null and alternative hypotheses. Choose the correct answer below.

A.

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2 Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline not equals sigma Subscript 2 Superscript 2

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2

H0: σ21≤σ22

Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline not equals sigma Subscript 2 Superscript 2

HA: σ21≠σ22

B.

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2 Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline greater than sigma Subscript 2 Superscript 2

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2

H0: σ21≤σ22

Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline greater than sigma Subscript 2 Superscript 2

HA: σ21>σ22

C.

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2 Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline not equals sigma Subscript 2 Superscript 2

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2

H0: σ21≤σ22

Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline not equals sigma Subscript 2 Superscript 2

HA: σ21≠σ22

D.

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2 Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline equals sigma Subscript 2 Superscript 2

Upper H 0 : sigma Subscript 1 Superscript 2 Baseline less than or equals sigma Subscript 2 Superscript 2

H0: σ21≤σ22

Upper H Subscript Upper A Baseline : sigma Subscript 1 Superscript 2 Baseline equals sigma Subscript 2 Superscript 2

HA: σ21=σ22

Part 2

Determine the test statistic.

F

equals

=    enter your response here

  ​(Round to two decimal places as​ needed.)

Part 3

Determine the critical value.

The critical​ F-value is     enter your response here

 .

​(Round to two decimal places as​ needed.)

Part 4

Reach a decision. Choose the correct answer below.

A.

Reject

Reject the null hypothesis. There is 

insufficient

insufficient evidence to conclude that the first variance is greater than the second variance.

B.

Reject

Reject the null hypothesis. There is 

sufficient

sufficient evidence to conclude that the first variance is greater than the second variance.

C.

Do not reject

Do not reject the null hypothesis. There is 

sufficient

sufficient evidence to conclude that the first variance is greater than the second variance.

D.

Do not reject

Do not reject the null hypothesis. There is 

insufficient

insufficient evidence to conclude that the first variance is greater than the second variance.

Solution

Let's go through each part of this problem step-by-step.

Part 1: State the Hypotheses

The problem asks us to test if the variance of Sample 1 (σ12\sigma_1^2) is greater than or equal to the variance of Sample 2 (σ22\sigma_2^2). This leads to the following hypotheses:

  • Null Hypothesis (H0H_0): σ12σ22\sigma_1^2 \leq \sigma_2^2
  • Alternative Hypothesis (HAH_A): σ12>σ22\sigma_1^2 > \sigma_2^2

This matches Answer Choice B.


Part 2: Determine the Test Statistic (F-Test)

To determine the test statistic FF, we use the formula:

F=s12s22F = \frac{s_1^2}{s_2^2}

where:

  • s12s_1^2 is the sample variance of Sample 1
  • s22s_2^2 is the sample variance of Sample 2

Step 1: Calculate Sample Variances

For each sample, we calculate the sample mean, then the sample variance.

Sample 1 Data: 11.1,13.5,12.2,11.5,14.811.1, 13.5, 12.2, 11.5, 14.8
  1. Mean of Sample 1: xˉ1=11.1+13.5+12.2+11.5+14.85=12.62\bar{x}_1 = \frac{11.1 + 13.5 + 12.2 + 11.5 + 14.8}{5} = 12.62

  2. Variance of Sample 1: s12=(11.112.62)2+(13.512.62)2+(12.212.62)2+(11.512.62)2+(14.812.62)251=2.29s_1^2 = \frac{(11.1 - 12.62)^2 + (13.5 - 12.62)^2 + (12.2 - 12.62)^2 + (11.5 - 12.62)^2 + (14.8 - 12.62)^2}{5 - 1} = 2.29

Sample 2 Data: 10.1,8.5,9.2,7.4,11.810.1, 8.5, 9.2, 7.4, 11.8
  1. Mean of Sample 2: xˉ2=10.1+8.5+9.2+7.4+11.85=9.4\bar{x}_2 = \frac{10.1 + 8.5 + 9.2 + 7.4 + 11.8}{5} = 9.4

  2. Variance of Sample 2: s22=(10.19.4)2+(8.59.4)2+(9.29.4)2+(7.49.4)2+(11.89.4)251=2.47s_2^2 = \frac{(10.1 - 9.4)^2 + (8.5 - 9.4)^2 + (9.2 - 9.4)^2 + (7.4 - 9.4)^2 + (11.8 - 9.4)^2}{5 - 1} = 2.47

Step 2: Calculate the FF Statistic

F=s12s22=2.292.470.93F = \frac{s_1^2}{s_2^2} = \frac{2.29}{2.47} \approx 0.93


Part 3: Determine the Critical Value

Since we have a one-tailed test with α=0.05\alpha = 0.05, we need the critical FF-value for a significance level of 0.05. With degrees of freedom df1=4df_1 = 4 and df2=4df_2 = 4, the critical value can be found from FF-distribution tables or software. For df1=4df_1 = 4 and df2=4df_2 = 4 at the 0.05 significance level:

Fcritical6.39F_{\text{critical}} \approx 6.39


Part 4: Make a Decision

The decision rule for an FF-test is:

  • If FFcriticalF \geq F_{\text{critical}}, reject H0H_0.
  • If F<FcriticalF < F_{\text{critical}}, do not reject H0H_0.

Since F=0.93<6.39F = 0.93 < 6.39, we do not reject the null hypothesis.

Therefore, the correct answer is D: Do not reject the null hypothesis. There is insufficient evidence to conclude that the first variance is greater than the second variance.


Summary

  • Hypotheses: Answer B
  • Test Statistic: F=0.93F = 0.93
  • Critical Value: Fcritical=6.39F_{\text{critical}} = 6.39
  • Decision: Do not reject the null hypothesis, Answer D

Would you like more details on any step, or do you have any questions?


Follow-up Questions

  1. How would the conclusion change if the calculated FF-statistic were greater than the critical value?
  2. What is the impact of sample size on the FF-test for equality of variances?
  3. Can this test be used if the data does not follow a normal distribution?
  4. How would we approach the test if we wanted a two-tailed hypothesis instead?
  5. What alternative tests exist for comparing variances if the FF-test assumptions are not met?

Tip

When using the FF-test for variances, always check if the data meets the normality assumption, as the test is sensitive to non-normal data.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Hypothesis Testing
Variance

Formulas

F = s1² / s2²

Theorems

F-distribution
Null and Alternative Hypotheses

Suitable Grade Level

Grades 11-12