Math Problem Statement

Laske kuvan sinisten köysien rasitukset, kun laatikon massa on 120kg.

Solution

To solve this problem, we calculate the tensions in the left (vasen) and right (oikea) ropes using trigonometry and the given angles.

Step 1: Break Down the Problem

The box has a mass of 120kg120 \, \text{kg}, so its weight WW can be calculated as: W=mg=1209.81=1177.2N.W = m \cdot g = 120 \cdot 9.81 = 1177.2 \, \text{N}.

This weight is supported by the two ropes at angles 2929^\circ and 3636^\circ from the horizontal. We'll denote:

  • T1T_1: Tension in the left rope (vasen köysi),
  • T2T_2: Tension in the right rope (oikea köysi).

The weight is distributed such that the vertical components of T1T_1 and T2T_2 add up to 1177.2N1177.2 \, \text{N}, and their horizontal components cancel each other out.

Step 2: System of Equations

  1. Vertical force balance: T1sin(29)+T2sin(36)=1177.2T_1 \cdot \sin(29^\circ) + T_2 \cdot \sin(36^\circ) = 1177.2

  2. Horizontal force balance: T1cos(29)=T2cos(36)T_1 \cdot \cos(29^\circ) = T_2 \cdot \cos(36^\circ)

From the horizontal force balance, solve for T1T_1 in terms of T2T_2: T1=T2cos(36)cos(29)T_1 = T_2 \cdot \frac{\cos(36^\circ)}{\cos(29^\circ)}

Step 3: Solve for T2T_2

Substitute T1T_1 into the vertical force equation: (T2cos(36)cos(29))sin(29)+T2sin(36)=1177.2\left(T_2 \cdot \frac{\cos(36^\circ)}{\cos(29^\circ)}\right) \cdot \sin(29^\circ) + T_2 \cdot \sin(36^\circ) = 1177.2

Factor out T2T_2: T2(cos(36)sin(29)cos(29)+sin(36))=1177.2T_2 \cdot \left(\frac{\cos(36^\circ) \cdot \sin(29^\circ)}{\cos(29^\circ)} + \sin(36^\circ)\right) = 1177.2

Simplify: T2=1177.2cos(36)sin(29)cos(29)+sin(36)T_2 = \frac{1177.2}{\frac{\cos(36^\circ) \cdot \sin(29^\circ)}{\cos(29^\circ)} + \sin(36^\circ)}

Step 4: Numerical Calculation

Use trigonometric values: sin(29)0.4848,cos(29)0.8763\sin(29^\circ) \approx 0.4848, \, \cos(29^\circ) \approx 0.8763 sin(36)0.5878,cos(36)0.8090\sin(36^\circ) \approx 0.5878, \, \cos(36^\circ) \approx 0.8090

Substitute: T2=1177.20.80900.48480.8763+0.5878T_2 = \frac{1177.2}{\frac{0.8090 \cdot 0.4848}{0.8763} + 0.5878}

Simplify: T2=1177.20.39190.8763+0.5878=1177.20.4472+0.5878=1177.21.03501138N.T_2 = \frac{1177.2}{\frac{0.3919}{0.8763} + 0.5878} = \frac{1177.2}{0.4472 + 0.5878} = \frac{1177.2}{1.0350} \approx 1138 \, \text{N}.

Now calculate T1T_1: T1=T2cos(36)cos(29)=11380.80900.876311380.92321050N.T_1 = T_2 \cdot \frac{\cos(36^\circ)}{\cos(29^\circ)} = 1138 \cdot \frac{0.8090}{0.8763} \approx 1138 \cdot 0.9232 \approx 1050 \, \text{N}.

Final Answer

  • Left rope tension (vasen köysi): 1050N1050 \, \text{N},
  • Right rope tension (oikea köysi): 1138N1138 \, \text{N}.

Would you like a detailed explanation of any part of this? Here are some related questions to expand your understanding:

  1. How do we derive trigonometric functions like sin\sin and cos\cos for angles?
  2. Why do the horizontal forces cancel out in this type of equilibrium problem?
  3. How does the weight of the object distribute across the two ropes?
  4. What happens if the angles are changed (e.g., larger or smaller)?
  5. Can you explain the relationship between vertical and horizontal components in tension problems?

Tip: In physics problems involving angles and forces, always resolve forces into vertical and horizontal components to simplify the equations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Statics
Force Balance

Formulas

Weight: W = m * g
Vertical force balance: T1 * sin(29°) + T2 * sin(36°) = W
Horizontal force balance: T1 * cos(29°) = T2 * cos(36°)

Theorems

Equilibrium of Forces
Trigonometric Ratios

Suitable Grade Level

Grades 10-12