Math Problem Statement

7th solution

Using Taylor's theorem find the expansion of tan(x + π/4) in ascending powers of x up to terms in x⁴ and find approximately the value of tan(43°).

Solution

To find the Taylor series expansion of tan(x+π4)\tan\left(x + \frac{\pi}{4}\right) up to terms in x4x^4, we proceed as follows:


1. Expression Setup:

We know the trigonometric identity: tan(x+π4)=tanx+11tanx\tan\left(x + \frac{\pi}{4}\right) = \frac{\tan x + 1}{1 - \tan x} Let t=tanxt = \tan x, so we expand tan(x+π4)\tan\left(x + \frac{\pi}{4}\right) as: tan(x+π4)=t+11t.\tan\left(x + \frac{\pi}{4}\right) = \frac{t + 1}{1 - t}.


2. Taylor Expansion of tanx\tan x:

The Taylor series of tanx\tan x around x=0x = 0 is: tanx=x+x33+O(x5).\tan x = x + \frac{x^3}{3} + \mathcal{O}(x^5). Substituting this into the expression for tan(x+π4)\tan\left(x + \frac{\pi}{4}\right), we expand step by step.


3. Substitute tt into the Formula:

Replace tx+x33t \approx x + \frac{x^3}{3} in: t+11t.\frac{t + 1}{1 - t}.

Numerator:

t+1(x+x33)+1=1+x+x33.t + 1 \approx \left(x + \frac{x^3}{3}\right) + 1 = 1 + x + \frac{x^3}{3}.

Denominator:

1t1(x+x33)=1xx33.1 - t \approx 1 - \left(x + \frac{x^3}{3}\right) = 1 - x - \frac{x^3}{3}.

Thus: tan(x+π4)1+x+x331xx33.\tan\left(x + \frac{\pi}{4}\right) \approx \frac{1 + x + \frac{x^3}{3}}{1 - x - \frac{x^3}{3}}.


4. Simplification Using Series Division:

To simplify 1+u1v\frac{1 + u}{1 - v} for small uu and vv, we use: 1+u1v1+u+v+uv(neglect higher-order terms).\frac{1 + u}{1 - v} \approx 1 + u + v + u v \quad (\text{neglect higher-order terms}).

Here:

  • u=x+x33u = x + \frac{x^3}{3},
  • v=x+x33v = x + \frac{x^3}{3}.

Substitute: u+v=(x+x33)+(x+x33)=2x+2x33.u + v = \left(x + \frac{x^3}{3}\right) + \left(x + \frac{x^3}{3}\right) = 2x + \frac{2x^3}{3}. uv=(x+x33)(x+x33)=x2+2x43(keeping terms up to x4).u v = \left(x + \frac{x^3}{3}\right)\left(x + \frac{x^3}{3}\right) = x^2 + \frac{2x^4}{3} \quad (\text{keeping terms up to } x^4).

Thus: tan(x+π4)1+(2x+2x33)+x2.\tan\left(x + \frac{\pi}{4}\right) \approx 1 + \left(2x + \frac{2x^3}{3}\right) + x^2.


5. Combine and Finalize:

Combine all terms up to x4x^4: tan(x+π4)1+2x+x2+2x33.\tan\left(x + \frac{\pi}{4}\right) \approx 1 + 2x + x^2 + \frac{2x^3}{3}.


6. Approximation for tan43\tan 43^\circ:

Since 43π4+x43^\circ \approx \frac{\pi}{4} + x where x=1x = 1^\circ in radians (x=π180x = \frac{\pi}{180}), substitute x0.01745x \approx 0.01745 into the series: tan(π4+x)1+2(0.01745)+(0.01745)2.\tan\left(\frac{\pi}{4} + x\right) \approx 1 + 2(0.01745) + (0.01745)^2. Calculating this gives: tan431+0.0349+0.0003041.0352.\tan 43^\circ \approx 1 + 0.0349 + 0.000304 \approx 1.0352.


Final Results:

  1. Taylor Series: tan(x+π4)1+2x+x2+2x33.\tan\left(x + \frac{\pi}{4}\right) \approx 1 + 2x + x^2 + \frac{2x^3}{3}.
  2. Approximation for tan43\tan 43^\circ: tan431.0352.\tan 43^\circ \approx 1.0352.

Let me know if you need further explanations or simplifications!


Related Questions:

  1. How is the Taylor series for tanx\tan x derived step by step?
  2. Can you expand other trigonometric functions like sin(x+π4)\sin(x + \frac{\pi}{4}) using Taylor series?
  3. How accurate is the approximation of tan43\tan 43^\circ when using higher-order terms?
  4. What happens when we include x5x^5-terms in the series expansion?
  5. How can the series be applied for small angles in engineering or physics?

Tip:

When working with small angles, using approximations like sinxx\sin x \approx x and tanxx\tan x \approx x simplifies calculations significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Taylor Series Expansion
Trigonometric Functions
Small Angle Approximation

Formulas

Taylor Series: f(x) ≈ f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ...
tan(x + π/4) = (tan x + 1) / (1 - tan x)
Small angle approximation: sin x ≈ x, tan x ≈ x for small x

Theorems

Taylor's Theorem

Suitable Grade Level

Undergraduate Math / Advanced High School