Math Problem Statement
Use the following information to complete parts a. and b. below.
f left parenthesis x right parenthesis equals 5 ln xf(x)=5lnx,
aequals=44
Question content area bottom
Part 1
a. Find the first four nonzero terms of the Taylor series for the given function centered at a.
A.
The first four nonzero terms are
5 ln 4 plus five fourths left parenthesis x minus 4 right parenthesis minus StartFraction 5 Over 32 EndFraction left parenthesis x minus 4 right parenthesis squared plus StartFraction 5 Over 192 EndFraction left parenthesis x minus 4 right parenthesis cubed5ln 4+54(x−4)−532(x−4)2+5192(x−4)3.
B.
The first four nonzero terms are
5 ln 4 minus five fourths left parenthesis x minus 4 right parenthesis minus five sixteenths left parenthesis x minus 4 right parenthesis squared minus StartFraction 5 Over 32 EndFraction left parenthesis x minus 4 right parenthesis cubed5ln 4−54(x−4)−516(x−4)2−532(x−4)3.
C.
The first four nonzero terms are
negative five fourths plus StartFraction 5 Over 32 EndFraction left parenthesis x minus 4 right parenthesis minus StartFraction 5 Over 32 EndFraction left parenthesis x minus 4 right parenthesis squared plus StartFraction 15 Over 64 EndFraction left parenthesis x minus 4 right parenthesis cubed−54+532(x−4)−532(x−4)2+1564(x−4)3.
D.
The first four nonzero terms are
negative five fourths plus StartFraction 5 Over 32 EndFraction left parenthesis x minus 4 right parenthesis minus StartFraction 5 Over 192 EndFraction left parenthesis x minus 4 right parenthesis squared plus StartFraction 5 Over 1024 EndFraction left parenthesis x minus 4 right parenthesis cubed−54+532(x−4)−5192(x−4)2+51024(x−4)3.
Part 2
b. Write the power series using summation notation.
A.5 ln 4 plus Summation from k equals 0 to infinity StartFraction 5 left parenthesis negative 1 right parenthesis Superscript k plus 1 Over 4 Superscript k Baseline left parenthesis x minus 4 right parenthesis Superscript k EndFraction
5 ln 45ln 4plus+Summation from k equals 0 to infinity StartFraction 5 left parenthesis negative 1 right parenthesis Superscript k plus 1 Over 4 Superscript k Baseline left parenthesis x minus 4 right parenthesis Superscript k EndFraction∑k=0∞5(−1)k+14k(x−4)k
B.5 ln 4 plus Summation from k equals 1 to infinity left parenthesis negative 1 right parenthesis Superscript k plus 1 Baseline times StartFraction 5 Over k times 4 Superscript k EndFraction left parenthesis x minus 4 right parenthesis Superscript k
5 ln 45ln 4plus+Summation from k equals 1 to infinity left parenthesis negative 1 right parenthesis Superscript k plus 1 Baseline times StartFraction 5 Over k times 4 Superscript k EndFraction left parenthesis x minus 4 right parenthesis Superscript k∑k=1∞(−1)k+1•5k•4k(x−4)k
C.5 ln 4 plus Summation from k equals 0 to infinity left parenthesis negative 1 right parenthesis Superscript k Baseline times StartFraction 5 Over 4 Superscript k Baseline left parenthesis x minus 4 right parenthesis Superscript k EndFraction
5 ln 45ln 4plus+Summation from k equals 0 to infinity left parenthesis negative 1 right parenthesis Superscript k Baseline times StartFraction 5 Over 4 Superscript k Baseline left parenthesis x minus 4 right parenthesis Superscript k EndFraction∑k=0∞(−1)k•54k(x−4)k
D.5 ln 4 plus Summation from k equals 1 to infinity StartFraction 5 left parenthesis negative 1 right parenthesis Superscript k plus 1 Baseline left parenthesis x minus 4 right parenthesis Superscript k Over 4 Superscript k EndFraction
5 ln 45ln 4plus+Summation from k equals 1 to infinity StartFraction 5 left parenthesis negative 1 right parenthesis Superscript k plus 1 Baseline left parenthesis x minus 4 right parenthesis Superscript k Over 4 Superscript k EndFraction∑k=1∞5(−1)k+1(x−4)k4k
Solution
Part 1: Find the first four nonzero terms of the Taylor series
To find the Taylor series for centered at , we use the formula for the Taylor series expansion: where , , , etc., are derivatives of evaluated at .
Step 1: Compute the derivatives of
Step 2: Evaluate the derivatives at
Step 3: Write the first four terms of the Taylor series
Substituting the values: Simplify:
The first four nonzero terms are: This corresponds to Option A.
Part 2: Write the power series using summation notation
The Taylor series can also be written in summation form: Here:
- alternates the sign of each term.
- is the coefficient of the -th term.
The correct summation form is: This corresponds to Option B.
Final Answers:
- Part (a): (Option A)
- Part (b): (Option B)
Do you want a breakdown of any specific step or further clarification?
Here are some related questions to explore:
- How do Taylor series help approximate functions?
- Can the Taylor series of converge for all values of ?
- How is the radius of convergence for a Taylor series determined?
- How does the factorial in the denominator affect the series' terms?
- What are real-world applications of logarithmic Taylor expansions?
Tip: Always test the convergence of a series to ensure it is valid for your range of interest!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Taylor Series
Logarithmic Functions
Power Series Representation
Formulas
Taylor series formula: f(x) = f(a) + f'(a)(x-a) + (f''(a)/2!)(x-a)^2 + ...
Logarithmic derivative: d(ln x)/dx = 1/x
Theorems
Taylor Series Expansion Theorem
Convergence of Taylor Series
Suitable Grade Level
Undergraduate Calculus (or Advanced High School Calculus)
Related Recommendation
Find the Taylor Series for f(x) centered at a = 2
Taylor Series for ln(x) Centered at 1
Power Series Expansion of 5x * ln(1+2x) and Coefficients c_0 to c_4
Taylor Series Approximation for Natural Logarithms: 1.05ln(1.05) and 2ln(2)
Taylor Series for ln((1+x)/(1-x)) and Approximation of ln(3) with 4 Terms