Math Problem Statement

Let f(x) = sqrt(1 + x/2). Find the Taylor polynomial of f(x) of order 2 about the origin.

Solution

To find the Taylor polynomial of f(x)=1+x2f(x) = \sqrt{1 + \frac{x}{2}} of order 2 about the origin, we need to calculate the derivatives of f(x)f(x) and evaluate them at x=0x = 0.

  1. Find f(0)f(0): f(0)=1+02=1=1f(0) = \sqrt{1 + \frac{0}{2}} = \sqrt{1} = 1

  2. Find f(x)f'(x): f(x)=ddx(1+x2)1/2=12(1+x2)1/212=14(1+x2)1/2f'(x) = \frac{d}{dx}\left(1 + \frac{x}{2}\right)^{1/2} = \frac{1}{2}(1 + \frac{x}{2})^{-1/2} \cdot \frac{1}{2} = \frac{1}{4}(1 + \frac{x}{2})^{-1/2} f(0)=14(1+0)1/2=14f'(0) = \frac{1}{4}(1 + 0)^{-1/2} = \frac{1}{4}

  3. Find f(x)f''(x): f(x)=ddx(14(1+x2)1/2)=14(12)(1+x2)3/212f''(x) = \frac{d}{dx}\left(\frac{1}{4}(1 + \frac{x}{2})^{-1/2}\right) = \frac{1}{4} \cdot \left(-\frac{1}{2}\right)(1 + \frac{x}{2})^{-3/2} \cdot \frac{1}{2} f(x)=116(1+x2)3/2f''(x) = -\frac{1}{16}(1 + \frac{x}{2})^{-3/2} f(0)=116(1+0)3/2=116f''(0) = -\frac{1}{16}(1 + 0)^{-3/2} = -\frac{1}{16}

  4. Construct the Taylor polynomial: P2(x)=f(0)+f(0)x+f(0)2!x2P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 P2(x)=1+14x116x22P_2(x) = 1 + \frac{1}{4}x - \frac{1}{16}\frac{x^2}{2} P2(x)=1+14x132x2P_2(x) = 1 + \frac{1}{4}x - \frac{1}{32}x^2

The Taylor polynomial of order 2 is P2(x)=1+14x132x2P_2(x) = 1 + \frac{1}{4}x - \frac{1}{32}x^2.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Taylor Polynomials
Series Expansion

Formulas

Taylor series: P_n(x) = f(0) + f'(0)x + (f''(0)/2!)x^2 + ...
Derivative rules for power functions and chain rule

Theorems

Taylor Polynomial Expansion

Suitable Grade Level

Grades 11-12 or College Calculus