Math Problem Statement

Find an equation for the line tangent to the curve at the point defined by the given value of t.​ Also, find the value of StartFraction d squared y Over dx squared EndFraction at this point. xequalstangent squared tminus1 ​, yequalscotangent t​; tequalsnegative StartFraction pi Over 4 EndFraction Question content area bottom Part 1 Write the equation of the tangent line.

Solution

We need to determine the tangent line equation and the second derivative d2ydx2\frac{d^2y}{dx^2} for the parametric curve given:

x=tan2t1,y=cott,t=π4.x = \tan^2 t - 1, \quad y = \cot t, \quad t = -\frac{\pi}{4}.


Step 1: Find the point (x,y)(x, y) on the curve for t=π4t = -\frac{\pi}{4}.

Compute xx:

x=tan2(π4)1.x = \tan^2\left(-\frac{\pi}{4}\right) - 1. tan(π4)=1\tan\left(-\frac{\pi}{4}\right) = -1, so: x=(1)21=0.x = (-1)^2 - 1 = 0.

Compute yy:

y=cot(π4).y = \cot\left(-\frac{\pi}{4}\right). cot(π4)=1\cot\left(-\frac{\pi}{4}\right) = -1, so: y=1.y = -1.

Thus, the point is (0,1)(0, -1).


Step 2: Find the slope of the tangent line (dydx\frac{dy}{dx}).

From parametric equations, the slope is: dydx=dydtdxdt.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.

Compute dxdt\frac{dx}{dt}:

x=tan2t1    dxdt=2tantsec2t.x = \tan^2 t - 1 \implies \frac{dx}{dt} = 2\tan t \sec^2 t.

Compute dydt\frac{dy}{dt}:

y=cott    dydt=csc2t.y = \cot t \implies \frac{dy}{dt} = -\csc^2 t.

Evaluate dydx\frac{dy}{dx} at t=π4t = -\frac{\pi}{4}:

At t=π4t = -\frac{\pi}{4}: tan(π4)=1,sec2(π4)=2,csc2(π4)=2.\tan\left(-\frac{\pi}{4}\right) = -1, \quad \sec^2\left(-\frac{\pi}{4}\right) = 2, \quad \csc^2\left(-\frac{\pi}{4}\right) = 2. dxdt=2(1)(2)=4,dydt=2.\frac{dx}{dt} = 2(-1)(2) = -4, \quad \frac{dy}{dt} = -2. dydx=dydtdxdt=24=12.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-2}{-4} = \frac{1}{2}.

The slope of the tangent line is 12\frac{1}{2}.


Step 3: Write the equation of the tangent line.

The equation of the tangent line is: yy1=m(xx1),y - y_1 = m(x - x_1), where m=12m = \frac{1}{2}, and (x1,y1)=(0,1)(x_1, y_1) = (0, -1).

y(1)=12(x0)    y+1=12x.y - (-1) = \frac{1}{2}(x - 0) \implies y + 1 = \frac{1}{2}x.

Final tangent line equation: y=12x1.y = \frac{1}{2}x - 1.


Part 2: Compute d2ydx2\frac{d^2y}{dx^2}.

From parametric equations: d2ydx2=ddt(dydx)÷dxdt.\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \div \frac{dx}{dt}.

Differentiate dydx\frac{dy}{dx}:

dydx=dydtdxdt=csc2t2tantsec2t.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\csc^2 t}{2\tan t \sec^2 t}. Simplify: dydx=csc2t2tant(1+tan2t).\frac{dy}{dx} = \frac{-\csc^2 t}{2\tan t (1 + \tan^2 t)}.

Using the quotient rule, find ddt(dydx)\frac{d}{dt}\left(\frac{dy}{dx}\right), then divide by dxdt=4\frac{dx}{dt} = -4. The full derivative simplifies at t=π4t = -\frac{\pi}{4}.

At t=π4t = -\frac{\pi}{4}, d2ydx2\frac{d^2y}{dx^2} computes to 34-\frac{3}{4}.


Final Results:

  1. Tangent line equation: y=12x1.y = \frac{1}{2}x - 1.
  2. d2ydx2=34\frac{d^2y}{dx^2} = -\frac{3}{4}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric equations
Derivatives in calculus
Second derivatives
Tangent lines

Formulas

Slope of a tangent line: dy/dx = (dy/dt) / (dx/dt)
Second derivative: d²y/dx² = (d(dy/dx)/dt) / (dx/dt)
Equation of a line: y - y₁ = m(x - x₁)

Theorems

Quotient rule in differentiation
Chain rule for parametric equations

Suitable Grade Level

Grades 11-12 or College Calculus