Math Problem Statement

table and graph of the rule y=10-x^2-3x

Solution

Let's create the table of values and a graph for the given equation y=10x23xy = 10 - x^2 - 3x.


1. Table of Values

We will calculate yy for a range of xx-values. Here's the table for xx from 5-5 to 55.

xxy=10x23xy = 10 - x^2 - 3x
5-5y=10(5)23(5)=1025+15=0y = 10 - (-5)^2 - 3(-5) = 10 - 25 + 15 = 0
4-4y=10(4)23(4)=1016+12=6y = 10 - (-4)^2 - 3(-4) = 10 - 16 + 12 = 6
3-3y=10(3)23(3)=109+9=10y = 10 - (-3)^2 - 3(-3) = 10 - 9 + 9 = 10
2-2y=10(2)23(2)=104+6=12y = 10 - (-2)^2 - 3(-2) = 10 - 4 + 6 = 12
1-1y=10(1)23(1)=101+3=12y = 10 - (-1)^2 - 3(-1) = 10 - 1 + 3 = 12
00y=10(0)23(0)=10y = 10 - (0)^2 - 3(0) = 10
11y=10(1)23(1)=1013=6y = 10 - (1)^2 - 3(1) = 10 - 1 - 3 = 6
22y=10(2)23(2)=1046=0y = 10 - (2)^2 - 3(2) = 10 - 4 - 6 = 0
33y=10(3)23(3)=1099=8y = 10 - (3)^2 - 3(3) = 10 - 9 - 9 = -8
44y=10(4)23(4)=101612=18y = 10 - (4)^2 - 3(4) = 10 - 16 - 12 = -18

2. Graph

The graph of the equation y=10x23xy = 10 - x^2 - 3x is a downward-facing parabola because the coefficient of x2x^2 is negative. I’ll plot the graph based on the table. Let me generate this now. numpy as np import matplotlib.pyplot as plt

Define the function

def f(x): return 10 - x**2 - 3*x

Generate x values and calculate y values

x_values = np.linspace(-5, 5, 100) y_values = f(x_values)

Create the table data for specific points

x_table = np.array([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) y_table = f(x_table)

Plot the graph

plt.figure(figsize=(8, 6)) plt.plot(x_values, y_values, label='y = 10 - x^2 - 3x', color='blue') plt.scatter(x_table, y_table, color='red', label='Table points') plt.axhline(0, color='black', linewidth=0.8, linestyle='--') plt.axvline(0, color='black', linewidth=0.8, linestyle='--') plt.title('Graph of y = 10 - x^2 - 3x') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.grid(True) plt.show()Here is the graph of y=10x23xy = 10 - x^2 - 3x. The plotted red points correspond to the table values.


Would you like more details on how the table was computed or about properties like the vertex and axis of symmetry?

Relative Questions:

  1. How is the vertex of a parabola calculated, and what is the vertex here?
  2. What role does the coefficient of x2x^2 play in the shape of the graph?
  3. How can we find the roots of y=10x23xy = 10 - x^2 - 3x?
  4. What are the applications of quadratic functions like this one?
  5. How can we rewrite y=10x23xy = 10 - x^2 - 3x in vertex form?

Tip:

To quickly identify key points of a parabola, focus on the vertex, the axis of symmetry, and intercepts (both x and y).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Graphing
Parabolas

Formulas

y = ax^2 + bx + c (standard form of a quadratic equation)
Vertex formula: x = -b/(2a)

Theorems

Properties of parabolas
Symmetry of quadratic functions

Suitable Grade Level

Grades 9-12