Math Problem Statement

i have this symmetric oscillator equation d^2 X/dtau^2 + X = epsilonX^3 or d/dtau(X U) = (U -X+epsilonX^3) Write a matlab code to integrate the equations of motion numerically and obtain the time series over N periods of oscillation. Also compute the corresponding spectrum for the displacement X(tau). do it in this format but id dont have an asym_ODE clear variables set(0, 'DefaultAxesFontName', 'Courier New', 'DefaultAxesFontSize', 11) options = odeset('RelTol',12-6,'AbsTol',1e-6); epsilon = 0.5; X0 = 1; U0 = 0; init = [X0 U0];

% compute period T define time domain t E = (1/2) - epsilon/3; coeffs = [(epsilon/3), -1/2, 0, E]; sols = roots(coeffs); sols = sort(sols,'ascend'); Xc = sols(1); integrand = @(y) 1./sqrt((1-y.^2) - (2epsilon/3)(1 - y.^3)); T = 2integral(integrand,Xc,1); p = 2pi/T; N = 8; Tmax = N*T; n = 2^13; dt = Tmax/n; t= 0:dt:Tmax-dt;

% define frequency domain domega = 2pi/Tmax; omega_max = ndomega; omega = (0:n-1)*domega; omega(n/2+1:n) = omega(n/2+1) - omega_max;

%call solver and extra time series [t,soln] = ode45('asym_ODE',t,init,options,epsilon); X =sol(:,1); U = soln(:,2); spec = fft(X);

% plot graphs' figure(1) set(gcf,'Name','Position and velocity time series','NumberTitle','off') subplot(2,1,1) plot(t/T,X,'b'); axis([0 N -1.5 1.5]) grid on; box on; xlabel('Time \tau/T'); ylabel('U(\tau)') figtitle = ['\epsilon = ',num2str(epsilon)]; title(figtitle) subplot(2,1,2) plot(t/T,U,'r'); axis([0 N -1.5 1.5]) grid on; box on; xlabel('Time \tau/T'); yabel('U(\tau')

s = find(omega>= 0); figure(2) set(gcf,'Name','Fast Fourier transform','NumberTitle','off') semilogy(omega(s)/p,abs(spec(s)),'m'); grid on; box on; axis([0 10 1e-4 1e4]); xticks(0:1:10); xlabel('Frequency \omega/p'); ylabel('Spectrum |FFT[X(\tau)]|') figtitle = ['\epsilon = ',num2str(epsilon)]; title(figtitle)

Solution

To integrate the given equations of motion and obtain the time series over N periods of oscillation, along with the corresponding spectrum for the displacement X(τ)X(\tau), we can modify your code to avoid using the asym_ODE function. Instead, we'll directly define the system of differential equations within the MATLAB script.

Here's a full version of your MATLAB code that numerically integrates the equations and computes the frequency spectrum using ode45:

matlab
clear variables set(0, 'DefaultAxesFontName', 'Courier New', 'DefaultAxesFontSize', 11) % Parameters epsilon = 0.5; X0 = 1; U0 = 0; % Initial conditions init = [X0, U0]; % Initial state vector % Define ODE system ode_system = @(tau, Y, epsilon) [Y(2); -Y(1) + epsilon * Y(1)^3]; % Set ODE solver options options = odeset('RelTol', 1e-6, 'AbsTol', 1e-6); % Compute period T (using integral approximation) E = (1/2) - epsilon/3; coeffs = [(epsilon/3), -1/2, 0, E]; sols = roots(coeffs); sols = sort(sols, 'ascend'); Xc = sols(1); integrand = @(y) 1./sqrt((1-y.^2) - (2*epsilon/3)*(1 - y.^3)); T = 2 * integral(integrand, Xc, 1); p = 2 * pi / T; % Set simulation time parameters N = 8; % Number of periods Tmax = N * T; n = 2^13; % Number of points in time domain dt = Tmax / n; t = 0:dt:Tmax-dt; % Time vector % Frequency domain domega = 2 * pi / Tmax; omega_max = n * domega; omega = (0:n-1) * domega; omega(n/2+1:n) = omega(n/2+1) - omega_max; % Solve the ODE using ode45 [t, soln] = ode45(@(tau, Y) ode_system(tau, Y, epsilon), t, init, options, epsilon); % Extract position and velocity from the solution X = soln(:, 1); U = soln(:, 2); % Compute the FFT of the displacement X spec = fft(X); % Plot the time series for position X and velocity U figure(1) set(gcf,'Name','Position and velocity time series','NumberTitle','off') subplot(2,1,1) plot(t/T, X, 'b'); axis([0 N -1.5 1.5]) grid on; box on; xlabel('Time \tau/T'); ylabel('X(\tau)') title(['\epsilon = ', num2str(epsilon)]) subplot(2,1,2) plot(t/T, U, 'r'); axis([0 N -1.5 1.5]) grid on; box on; xlabel('Time \tau/T'); ylabel('U(\tau)') % Compute the spectrum and plot it s = find(omega >= 0); figure(2) set(gcf,'Name','Fast Fourier Transform','NumberTitle','off') semilogy(omega(s)/p, abs(spec(s)), 'm'); grid on; box on; axis([0 10 1e-4 1e4]); xticks(0:1:10); xlabel('Frequency \omega/p'); ylabel('Spectrum |FFT[X(\tau)]|') title(['\epsilon = ', num2str(epsilon)])

Explanation:

  1. ODE System Definition: We define the system of equations in the function ode_system as: d2Xdτ2+X=ϵX3\frac{d^2 X}{d\tau^2} + X = \epsilon X^3 which becomes a system of two first-order ODEs: dXdτ=U\frac{dX}{d\tau} = U dUdτ=X+ϵX3\frac{dU}{d\tau} = -X + \epsilon X^3

  2. Time and Frequency Domain Setup: We calculate the period TT of the oscillator using the integral, and we define the time vector t for N periods. The frequency domain is also computed using the FFT parameters.

  3. ODE Solver: We use ode45 to numerically integrate the system. The time evolution of both X(τ)X(\tau) and U(τ)U(\tau) is computed.

  4. Plotting:

    • The first figure plots the position X(τ)X(\tau) and velocity U(τ)U(\tau) as a function of time over NN periods.
    • The second figure shows the frequency spectrum of the displacement X(τ)X(\tau) obtained via FFT.

Adjustments:

  • You can adjust the epsilon parameter, the number of periods N, or the number of time steps n to change the resolution or range of the simulation.
  • The frequency spectrum is plotted using a logarithmic scale (semilogy) to visualize the amplitude of frequencies.

Would you like further explanations on any of the steps or modifications to the code?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Oscillatory Motion
Fourier Transforms
Numerical Integration

Formulas

d^2X/dtau^2 + X = epsilon * X^3
d/dtau(X U) = (U - X + epsilon * X^3)

Theorems

Oscillator Period Formula
Fourier Transform Theorem

Suitable Grade Level

Undergraduate/Graduate level