Math Problem Statement

svd of C =   0 2 0 0 0 0

Solution

To find the Singular Value Decomposition (SVD) of matrix C=[020000]C = \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, we follow these steps:

The SVD of a matrix CC is given by:

C=UΣVTC = U \Sigma V^T

Where:

  • UU is an m×mm \times m orthogonal matrix.
  • Σ\Sigma is an m×nm \times n diagonal matrix with the singular values.
  • VV is an n×nn \times n orthogonal matrix.

Step 1: Find CTCC^T C

CT=[000200]C^T = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}

CTC=[000200][020000]=[4000]C^T C = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}

Step 2: Find the eigenvalues of CTCC^T C

The matrix CTC=[4000]C^T C = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} has the eigenvalues 4 and 0. The singular values σ1,σ2\sigma_1, \sigma_2 are the square roots of these eigenvalues:

σ1=4=2,σ2=0=0\sigma_1 = \sqrt{4} = 2, \quad \sigma_2 = \sqrt{0} = 0

So, the diagonal matrix Σ\Sigma is:

Σ=[200000]\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}

Step 3: Find VV

The eigenvectors of CTCC^T C correspond to the columns of VV. The eigenvector for the eigenvalue 4 is [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix}, and for the eigenvalue 0 is [01]\begin{bmatrix} 0 \\ 1 \end{bmatrix}. Therefore:

V=[1001]V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Step 4: Find UU

We can now compute UU using the formula U=CVΣ1U = C V \Sigma^{-1}. Applying this:

U=CV=[020000][1001]=[020000]U = C \cdot V = \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}

We normalize the columns to get an orthonormal matrix:

U=[010000]U = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}

Thus, the SVD of CC is:

C=UΣVTC = U \Sigma V^T Where: U=[010000],Σ=[200000],V=[1001]U = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Would you like further details or clarifications?

Here are some related questions to explore:

  1. How are singular values related to the eigenvalues of CTCC^T C?
  2. What properties do the matrices UU and VV possess in the SVD?
  3. How does SVD differ from Eigenvalue Decomposition?
  4. Can you find the SVD of a general 3x3 matrix?
  5. How can the SVD be used in image compression?

Tip: SVD is a powerful tool used for dimensionality reduction and solving linear systems, especially in machine learning and data science applications.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Singular Value Decomposition (SVD)
Matrix Decomposition

Formulas

C = U Σ V^T
C^T C
Σ = diag(σ_1, σ_2)
Eigenvalue equation for C^T C

Theorems

Singular Value Decomposition Theorem
Eigenvalue and Eigenvector Theorem

Suitable Grade Level

Undergraduate