Math Problem Statement

Consider a surface σ of the form z = g(x, y), where (x, y) belongs to some region R in the xy-plane. Parametrize σ as follows: x = u, y = v, z = g(u, v). (i) Briefly explain why the vectors Tu and Tv look like this: Tu = <1, 0, ∂g/∂u>, Tv = <0, 1, ∂g/∂v>. (ii) Use (i) to show that the surface area element is dS = √[1 + (∂g/∂u)^2 + (∂g/∂v)^2] du dv.

Solution

Let's break this problem into its parts and solve it:


Part (i): Briefly Explain Why the Vectors Tu\mathbf{T}_u and Tv\mathbf{T}_v Look Like This

Given the parametrization: x=u,y=v,z=g(u,v),x = u, \quad y = v, \quad z = g(u, v), the surface can be expressed as σ(u,v)=u,v,g(u,v)\sigma(u, v) = \langle u, v, g(u, v) \rangle.

Now, calculate the partial derivatives:

  1. Partial with respect to uu: Tu=σu=uu,vu,gu=1,0,gu,\mathbf{T}_u = \frac{\partial \sigma}{\partial u} = \left\langle \frac{\partial u}{\partial u}, \frac{\partial v}{\partial u}, \frac{\partial g}{\partial u} \right\rangle = \langle 1, 0, g_u \rangle, where gu=gug_u = \frac{\partial g}{\partial u}.

  2. Partial with respect to vv: Tv=σv=uv,vv,gv=0,1,gv,\mathbf{T}_v = \frac{\partial \sigma}{\partial v} = \left\langle \frac{\partial u}{\partial v}, \frac{\partial v}{\partial v}, \frac{\partial g}{\partial v} \right\rangle = \langle 0, 1, g_v \rangle, where gv=gvg_v = \frac{\partial g}{\partial v}.

Thus, the given forms of Tu=1,0,gu\mathbf{T}_u = \langle 1, 0, g_u \rangle and Tv=0,1,gv\mathbf{T}_v = \langle 0, 1, g_v \rangle directly result from these calculations.


Part (ii): Use (i) to Show the Surface Area Element

To find the surface area element dSdS, compute the magnitude of the cross product Tu×Tv\mathbf{T}_u \times \mathbf{T}_v:

  1. Cross Product Tu×Tv\mathbf{T}_u \times \mathbf{T}_v: Using the determinant method:

    \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & g_u \\ 0 & 1 & g_v \end{vmatrix},$$ expand this determinant: $$\mathbf{T}_u \times \mathbf{T}_v = \mathbf{i} \begin{vmatrix} 0 & g_u \\ 1 & g_v \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & g_u \\ 0 & g_v \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}.$$ Compute each minor: - For $$\mathbf{i}$$: $$\begin{vmatrix} 0 & g_u \\ 1 & g_v \end{vmatrix} = (0)(g_v) - (1)(g_u) = -g_u$$, - For $$\mathbf{j}$$: $$\begin{vmatrix} 1 & g_u \\ 0 & g_v \end{vmatrix} = (1)(g_v) - (0)(g_u) = g_v$$, - For $$\mathbf{k}$$: $$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = (1)(1) - (0)(0) = 1$$. Thus: $$\mathbf{T}_u \times \mathbf{T}_v = \langle -g_u, -g_v, 1 \rangle.$$
  2. Magnitude of the Cross Product: Tu×Tv=(gu)2+(gv)2+12=gu2+gv2+1.\|\mathbf{T}_u \times \mathbf{T}_v\| = \sqrt{(-g_u)^2 + (-g_v)^2 + 1^2} = \sqrt{g_u^2 + g_v^2 + 1}.

  3. Surface Area Element: Since dS=Tu×TvdudvdS = \|\mathbf{T}_u \times \mathbf{T}_v\| du dv, substitute: dS=1+(gu)2+(gv)2dudv.dS = \sqrt{1 + \left(\frac{\partial g}{\partial u}\right)^2 + \left(\frac{\partial g}{\partial v}\right)^2} \, du dv.

When replacing uu and vv with xx and yy, the formula becomes: dS=1+(gx)2+(gy)2dxdy.dS = \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \, dx dy.


Let me know if you need further clarification!


Follow-Up Questions:

  1. How do partial derivatives relate to the tangent vectors of a surface?
  2. Why is the magnitude of the cross product used to find the surface area element?
  3. Can this process be extended to surfaces parametrized differently than σ(u,v)\sigma(u, v)?
  4. How does the formula for dSdS simplify when the surface is flat (g(x,y)=0g(x, y) = 0)?
  5. What happens if g(u,v)g(u, v) has discontinuities or undefined derivatives?

Tip:

Visualizing the tangent vectors Tu\mathbf{T}_u and Tv\mathbf{T}_v can help better understand how the cross product captures the local orientation and scaling of the surface!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Surface parametrization
Partial derivatives
Cross product
Surface area element

Formulas

Tu = <1, 0, ∂g/∂u>
Tv = <0, 1, ∂g/∂v>
Cross product: Tu × Tv = |i j k; 1 0 ∂g/∂u; 0 1 ∂g/∂v|
Magnitude of cross product: ||Tu × Tv|| = √[1 + (∂g/∂u)^2 + (∂g/∂v)^2]
Surface area element: dS = ||Tu × Tv|| du dv

Theorems

Parametrization of surfaces
Properties of cross products

Suitable Grade Level

Undergraduate-level mathematics or multivariable calculus