Math Problem Statement

solve

Find the area of the following surface using an explicit description of the surface. The trough z = 3x^2, for -2 ≤ x ≤ 2, 0 ≤ y ≤ 4.

Solution

To find the surface area of the trough defined by z=3x2z = 3x^2, over the region 2x2-2 \leq x \leq 2 and 0y40 \leq y \leq 4, we use the formula for the surface area of a surface z=f(x,y)z = f(x, y):

S=R1+(zx)2+(zy)2dxdyS = \int \int_{R} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx \, dy

Step-by-step solution:

  1. Compute partial derivatives:

    • zx=x(3x2)=6x\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(3x^2) = 6x
    • zy=y(3x2)=0\frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(3x^2) = 0
  2. Substitute into the formula:

    • 1+(zx)2+(zy)2=1+(6x)2+02=1+36x21 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 1 + (6x)^2 + 0^2 = 1 + 36x^2
  3. Set up the surface area integral: S=04221+36x2dxdyS = \int_{0}^{4} \int_{-2}^{2} \sqrt{1 + 36x^2} \, dx \, dy

  4. Simplify: The function 1+36x2\sqrt{1 + 36x^2} depends only on xx, so we can separate the integral: S=04dy221+36x2dxS = \int_{0}^{4} \, dy \int_{-2}^{2} \sqrt{1 + 36x^2} \, dx The outer integral over yy is simply the length of yy’s interval, which is 44: S=4221+36x2dxS = 4 \int_{-2}^{2} \sqrt{1 + 36x^2} \, dx

  5. Evaluate the integral: Let u=1+36x2u = 1 + 36x^2, so du=72xdxdu = 72x \, dx. Adjusting for substitution:

    • When x=2x = -2, u=1+36(2)2=145u = 1 + 36(-2)^2 = 145
    • When x=2x = 2, u=1+36(2)2=145u = 1 + 36(2)^2 = 145 The integral becomes: 221+36x2dx=21145u72du\int_{-2}^{2} \sqrt{1 + 36x^2} \, dx = 2 \int_{1}^{145} \frac{\sqrt{u}}{72} \, du Simplify further: =2721145u1/2du=136[23u3/2]1145= \frac{2}{72} \int_{1}^{145} u^{1/2} \, du = \frac{1}{36} \cdot \left[ \frac{2}{3} u^{3/2} \right]_{1}^{145} Evaluate: =13623[(145)3/2(1)3/2]= \frac{1}{36} \cdot \frac{2}{3} \left[ (145)^{3/2} - (1)^{3/2} \right] [ = \frac{2}{108} \left[ (145)^{3/2} - 1 \right] = \frac{1}{54} \left[ (145)^{3/2} - 1 \right] ]
  6. Multiply by 4: [ S = 4 \cdot \frac{1}{54} \left[ (145)^{3/2} - 1 \right] = \frac{4}{54} \left[ (145)^{3/2} - 1 \right] ] Simplify: S=227[(145)3/21]S = \frac{2}{27} \left[ (145)^{3/2} - 1 \right]

Final Answer:

227[(145)3/21]\boxed{\frac{2}{27} \left[ (145)^{3/2} - 1 \right]}

Let me know if you would like further clarification or a numerical approximation.

Here are related questions:

  1. Can we calculate this surface area numerically?
  2. What if the trough extended to a different range for xx?
  3. How does the calculation change if zz were dependent on yy as well?
  4. Can we interpret this surface area geometrically?
  5. How is this integral simplified using symmetry?

Tip: Always verify if symmetry can reduce computation in double integrals for functions like this!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Surface Area Calculation

Formulas

Surface Area Formula: S = ∫∫_R √(1 + (∂z/∂x)^2 + (∂z/∂y)^2) dx dy

Theorems

Integration over a surface in Cartesian coordinates

Suitable Grade Level

University-level (Calculus III or higher)