Math Problem Statement

Misalkan empat hasil pengukuran dalam suatu himpunan data adalah x1 = 2 ; x2 = 5 ; x3 = 3 ; dan x4 = 4. Hitunglah nilai-nilai numerik penjumlahan berikut: a) Σxi b) Σ8 c) Σ2xi d) Σ(xi - 3) e) Σxi^2 f) Σ(xi - 3)^2

Solution

Let's go through the problem step by step. The given data are x1=2x_1 = 2, x2=5x_2 = 5, x3=3x_3 = 3, and x4=4x_4 = 4. We are asked to calculate the following sums:

a) i=14xi\sum_{i=1}^4 x_i

This sum is just the sum of all the given xix_i: i=14xi=x1+x2+x3+x4=2+5+3+4=14\sum_{i=1}^4 x_i = x_1 + x_2 + x_3 + x_4 = 2 + 5 + 3 + 4 = 14

b) i=148\sum_{i=1}^4 8

This is a constant sum where each term is 8: i=148=8+8+8+8=32\sum_{i=1}^4 8 = 8 + 8 + 8 + 8 = 32

c) i=142xi\sum_{i=1}^4 2x_i

Here, each term is multiplied by 2: i=142xi=2(x1)+2(x2)+2(x3)+2(x4)=2(2)+2(5)+2(3)+2(4)=4+10+6+8=28\sum_{i=1}^4 2x_i = 2(x_1) + 2(x_2) + 2(x_3) + 2(x_4) = 2(2) + 2(5) + 2(3) + 2(4) = 4 + 10 + 6 + 8 = 28

d) i=14(xi3)\sum_{i=1}^4 (x_i - 3)

This involves subtracting 3 from each xix_i: i=14(xi3)=(23)+(53)+(33)+(43)=(1)+2+0+1=2\sum_{i=1}^4 (x_i - 3) = (2 - 3) + (5 - 3) + (3 - 3) + (4 - 3) = (-1) + 2 + 0 + 1 = 2

e) i=14xi2\sum_{i=1}^4 x_i^2

Here we square each xix_i: i=14xi2=22+52+32+42=4+25+9+16=54\sum_{i=1}^4 x_i^2 = 2^2 + 5^2 + 3^2 + 4^2 = 4 + 25 + 9 + 16 = 54

f) i=14(xi3)2\sum_{i=1}^4 (x_i - 3)^2

We first subtract 3 from each xix_i and then square the result: i=14(xi3)2=(23)2+(53)2+(33)2+(43)2=(1)2+22+02+12=1+4+0+1=6\sum_{i=1}^4 (x_i - 3)^2 = (2 - 3)^2 + (5 - 3)^2 + (3 - 3)^2 + (4 - 3)^2 = (-1)^2 + 2^2 + 0^2 + 1^2 = 1 + 4 + 0 + 1 = 6

Summary of the results:

  • a) i=14xi=14\sum_{i=1}^4 x_i = 14
  • b) i=148=32\sum_{i=1}^4 8 = 32
  • c) i=142xi=28\sum_{i=1}^4 2x_i = 28
  • d) i=14(xi3)=2\sum_{i=1}^4 (x_i - 3) = 2
  • e) i=14xi2=54\sum_{i=1}^4 x_i^2 = 54
  • f) i=14(xi3)2=6\sum_{i=1}^4 (x_i - 3)^2 = 6

Would you like further details or explanations on any step?

Here are five related questions to deepen your understanding:

  1. What is the general form of a summation and how can it be simplified?
  2. How do constant sums like in part (b) affect the total sum?
  3. What is the importance of squaring terms in a summation?
  4. How would the results change if different values for xix_i were provided?
  5. Can you think of real-world scenarios where such summations are useful?

Tip: When solving summations, simplify step by step to avoid errors, especially when variables or constants are involved.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Summation
Basic Algebra
Squares of Numbers

Formulas

Σxi = x1 + x2 + x3 + x4
Σ8 = 8 + 8 + 8 + 8
Σ2xi = 2(x1) + 2(x2) + 2(x3) + 2(x4)
Σ(xi - 3) = (x1 - 3) + (x2 - 3) + (x3 - 3) + (x4 - 3)
Σxi^2 = x1^2 + x2^2 + x3^2 + x4^2
Σ(xi - 3)^2 = (x1 - 3)^2 + (x2 - 3)^2 + (x3 - 3)^2 + (x4 - 3)^2

Theorems

-

Suitable Grade Level

Grades 9-11