Math Problem Statement

Convert sums to products for (a) sin(7x) + sin(x), (b) cos(7x) - cos(x), (c) cos(7x) + cos(x), (d) sin(7x) - sin(x).

Solution

To solve these trigonometric identities, we use the following sum-to-product formulas:

  1. For sinA+sinB\sin A + \sin B: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)

  2. For cosAcosB\cos A - \cos B: cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)

  3. For cosA+cosB\cos A + \cos B: cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)

  4. For sinAsinB\sin A - \sin B: sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)

Now, let's apply these formulas to each part:


(a) sin(7x)+sin(x)\sin(7x) + \sin(x):

sin(7x)+sin(x)=2sin(7x+x2)cos(7xx2)\sin(7x) + \sin(x) = 2 \sin\left(\frac{7x + x}{2}\right) \cos\left(\frac{7x - x}{2}\right) =2sin(4x)cos(3x)= 2 \sin(4x) \cos(3x)


(b) cos(7x)cos(x)\cos(7x) - \cos(x):

cos(7x)cos(x)=2sin(7x+x2)sin(7xx2)\cos(7x) - \cos(x) = -2 \sin\left(\frac{7x + x}{2}\right) \sin\left(\frac{7x - x}{2}\right) =2sin(4x)sin(3x)= -2 \sin(4x) \sin(3x)


(c) cos(7x)+cos(x)\cos(7x) + \cos(x):

cos(7x)+cos(x)=2cos(7x+x2)cos(7xx2)\cos(7x) + \cos(x) = 2 \cos\left(\frac{7x + x}{2}\right) \cos\left(\frac{7x - x}{2}\right) =2cos(4x)cos(3x)= 2 \cos(4x) \cos(3x)


(d) sin(7x)sin(x)\sin(7x) - \sin(x):

sin(7x)sin(x)=2cos(7x+x2)sin(7xx2)\sin(7x) - \sin(x) = 2 \cos\left(\frac{7x + x}{2}\right) \sin\left(\frac{7x - x}{2}\right) =2cos(4x)sin(3x)= 2 \cos(4x) \sin(3x)


Final Answers:

  • (a) sin(7x)+sin(x)=2sin(4x)cos(3x)\sin(7x) + \sin(x) = 2 \sin(4x) \cos(3x)
  • (b) cos(7x)cos(x)=2sin(4x)sin(3x)\cos(7x) - \cos(x) = -2 \sin(4x) \sin(3x)
  • (c) cos(7x)+cos(x)=2cos(4x)cos(3x)\cos(7x) + \cos(x) = 2 \cos(4x) \cos(3x)
  • (d) sin(7x)sin(x)=2cos(4x)sin(3x)\sin(7x) - \sin(x) = 2 \cos(4x) \sin(3x)

Would you like detailed steps for any part? Here are five related questions to deepen your understanding:

  1. What are the derivations of the sum-to-product formulas?
  2. Can the product-to-sum formulas be applied in reverse to these equations?
  3. How do these trigonometric transformations simplify integrals or derivatives?
  4. What is the geometric interpretation of sum-to-product identities?
  5. How do these identities apply to solving trigonometric equations?

Tip: Memorize these formulas and practice applying them to various problems to develop speed and accuracy!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum-to-Product Identities

Formulas

sin A + sin B = 2 sin((A+B)/2) cos((A-B)/2)
cos A - cos B = -2 sin((A+B)/2) sin((A-B)/2)
cos A + cos B = 2 cos((A+B)/2) cos((A-B)/2)
sin A - sin B = 2 cos((A+B)/2) sin((A-B)/2)

Theorems

Sum-to-Product Formulas

Suitable Grade Level

Grades 11-12