Math Problem Statement

∑ 1/( sqrt(n)) + 1/( sqrt(n+1)) solve this don't need any explanation

Solution

from sympy import symbols, sqrt, summation

Define variable

n = symbols('n', integer=True)

Expression inside the sum

expr = 1/sqrt(n) + 1/sqrt(n + 1)

Compute the summation (assuming summing from n=1 to some upper limit N, say N=10)

N = 10 result = summation(expr, (n, 1, N)) resultThe result of the summation n=110(1n+1n+1)\sum_{n=1}^{10} \left( \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \right) is:

[ \frac{\sqrt{11}}{11} + \frac{\sqrt{10}}{5} + \frac{2\sqrt{7}}{7} + \frac{\sqrt{6}}