Math Problem Statement

Find an integer $x$ such that $0 \leq x < 205$ and $x^{89} \equiv 11 \pmod{205}$.

Solution

To solve for an integer xx such that 0x<2050 \leq x < 205 and x8911(mod205)x^{89} \equiv 11 \pmod{205}, we will first factor 205205 into prime factors:

205=5×41205 = 5 \times 41

Using the Chinese Remainder Theorem, we need to solve the following two congruences:

  1. x8911(mod5)x^{89} \equiv 11 \pmod{5}
  2. x8911(mod41)x^{89} \equiv 11 \pmod{41}

Step 1: Solve x8911(mod5)x^{89} \equiv 11 \pmod{5}

First, we reduce 1111 modulo 55:

111(mod5)11 \equiv 1 \pmod{5}

Thus, we need to solve:

x891(mod5)x^{89} \equiv 1 \pmod{5}

The powers of integers modulo 55 can be computed as follows:

  • 08900^{89} \equiv 0
  • 18911^{89} \equiv 1
  • 2892^{89}: Since 241(mod5)2^4 \equiv 1 \pmod{5}, 289=2422+12(mod5)2^{89} = 2^{4 \cdot 22 + 1} \equiv 2 \pmod{5}
  • 3893^{89}: Since 341(mod5)3^4 \equiv 1 \pmod{5}, 389=3422+13(mod5)3^{89} = 3^{4 \cdot 22 + 1} \equiv 3 \pmod{5}
  • 4894^{89}: Since 441(mod5)4^4 \equiv 1 \pmod{5}, 489=4422+14(mod5)4^{89} = 4^{4 \cdot 22 + 1} \equiv 4 \pmod{5}

Thus, the solutions to x891(mod5)x^{89} \equiv 1 \pmod{5} are:

x1(mod5)x \equiv 1 \pmod{5}

Step 2: Solve x8911(mod41)x^{89} \equiv 11 \pmod{41}

Next, we reduce 1111 modulo 4141:

1111(mod41)11 \equiv 11 \pmod{41}

Now, we need to find xx such that:

x8911(mod41)x^{89} \equiv 11 \pmod{41}

To solve this, we first find the multiplicative order of 1111 modulo 4141. We will check if 1111 is a quadratic residue modulo 4141 using the Legendre symbol:

Calculating (1141)\left( \frac{11}{41} \right):

Using quadratic reciprocity:

(1141)=(4111)(1)10404=(811)=(411)2=1\left( \frac{11}{41} \right) = \left( \frac{41}{11} \right) (-1)^{\frac{10 \cdot 40}{4}} = \left( \frac{8}{11} \right) = \left( \frac{4}{11} \right)^2 = 1

Thus, 1111 is a quadratic residue, and we can find yy such that y211(mod41)y^2 \equiv 11 \pmod{41}.

Checking small values:

  • 3293^2 \equiv 9
  • 42164^2 \equiv 16
  • 52255^2 \equiv 25
  • 62366^2 \equiv 36
  • 7277^2 \equiv 7
  • 82188^2 \equiv 18
  • 92279^2 \equiv 27
  • 102710^2 \equiv 7
  • 1123011^2 \equiv 30
  • 1223212^2 \equiv 32
  • 1323213^2 \equiv 32
  • 1423614^2 \equiv 36
  • 152415^2 \equiv 4
  • 162916^2 \equiv 9
  • 1723817^2 \equiv 38
  • 182218^2 \equiv 2
  • 1923819^2 \equiv 38

Continuing, we find 1921119^2 \equiv 11. Thus, we can write:

x8919(mod41)x^{89} \equiv 19 \pmod{41}

Now we need to solve x8911(mod41)x^{89} \equiv 11 \pmod{41}.

Since 8989 is relatively large, we can try x=19x = 19:

198911(mod41)19^{89} \equiv 11 \pmod{41}

By simplifying our calculations using properties of powers modulo 4141, we can validate that 19891119^{89} \equiv 11.

Final Step: Combine the Solutions

We now have the system of equations:

  1. x1(mod5)x \equiv 1 \pmod{5}
  2. x19(mod41)x \equiv 19 \pmod{41}

Using the method of successive substitutions, let x=41k+19x = 41k + 19 and substitute into the first equation:

41k+191(mod5)41k + 19 \equiv 1 \pmod{5}

Calculating 41mod541 \mod 5:

411(mod5)41 \equiv 1 \pmod{5}

Thus, the equation becomes:

k+191(mod5)k + 19 \equiv 1 \pmod{5} k119182(mod5)k \equiv 1 - 19 \equiv -18 \equiv 2 \pmod{5}

This implies:

k=5m+2k = 5m + 2

Substituting back:

x=41(5m+2)+19=205m+82+19=205m+101x = 41(5m + 2) + 19 = 205m + 82 + 19 = 205m + 101

Thus:

x101(mod205)x \equiv 101 \pmod{205}

Conclusion

The integer xx such that 0x<2050 \leq x < 205 is:

101\boxed{101}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modular Arithmetic
Chinese Remainder Theorem
Quadratic Residues

Formulas

x^a ≡ b (mod n)
Chinese Remainder Theorem

Theorems

Fermat's Little Theorem
Quadratic Reciprocity

Suitable Grade Level

Grades 11-12