Math Problem Statement

tan^2(2x) + 2tan(2x)tan(3x) - 1 = 0

Solution

To solve the equation:

tan2(2x)+2tan(2x)tan(3x)1=0,\tan^2(2x) + 2\tan(2x)\tan(3x) - 1 = 0,

let's proceed step by step.

Step 1: Let tan(2x)=y\tan(2x) = y

This substitution simplifies the equation into a quadratic form:

y2+2ytan(3x)1=0.y^2 + 2y \tan(3x) - 1 = 0.

Step 2: Use the quadratic formula

The standard form of a quadratic equation is ay2+by+c=0ay^2 + by + c = 0. Here:

  • a=1a = 1
  • b=2tan(3x)b = 2 \tan(3x)
  • c=1c = -1

Using the quadratic formula:

y=b±b24ac2a=2tan(3x)±(2tan(3x))241(1)21y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \tan(3x) \pm \sqrt{(2 \tan(3x))^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1}

Simplify under the square root:

y=2tan(3x)±4tan2(3x)+42y = \frac{-2 \tan(3x) \pm \sqrt{4 \tan^2(3x) + 4}}{2}

y=2tan(3x)±2tan2(3x)+12y = \frac{-2 \tan(3x) \pm 2 \sqrt{\tan^2(3x) + 1}}{2}

y=tan(3x)±tan2(3x)+1.y = -\tan(3x) \pm \sqrt{\tan^2(3x) + 1}.

Since tan2(3x)+1=sec(3x)\sqrt{\tan^2(3x) + 1} = \sec(3x), the equation simplifies to:

tan(2x)=tan(3x)±sec(3x).\tan(2x) = -\tan(3x) \pm \sec(3x).

Step 3: Solve for xx

Now, you have two possible equations:

  1. tan(2x)=tan(3x)+sec(3x)\tan(2x) = -\tan(3x) + \sec(3x)
  2. tan(2x)=tan(3x)sec(3x)\tan(2x) = -\tan(3x) - \sec(3x)

These equations can be solved by substituting specific values for xx or using a graphing approach to find where both sides are equal.

Would you like a detailed step-by-step solution for these cases, or specific numerical values for xx?

Here are some related questions:

  1. What are the general solutions for tan(2x)=tan(3x)+sec(3x)\tan(2x) = -\tan(3x) + \sec(3x)?
  2. How does the periodicity of tangent and secant functions affect the solutions?
  3. How would you graphically solve tan(2x)+tan(3x)=0\tan(2x) + \tan(3x) = 0?
  4. What happens if tan(3x)\tan(3x) is replaced with another trigonometric function?
  5. How can substitution methods simplify trigonometric equations?

Tip: Always check the domain of the trigonometric functions involved when solving equations to avoid extraneous solutions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations
Trigonometric Identities
Substitution Method

Formulas

Quadratic formula: y = (-b ± √(b² - 4ac)) / 2a
Trigonometric identity: tan^2(x) + 1 = sec^2(x)

Theorems

Trigonometric Function Properties
Quadratic Equations

Suitable Grade Level

Grades 10-12