Math Problem Statement

Use the Law of Sines to solve for all possible triangles that satisfy the given conditions. (a) a = 20, b = 45, ∠A = 125◦ (b) a = 75, b = 100, ∠A = 30

Solution

To solve for all possible triangles using the Law of Sines, we'll examine each case:

Case (a): a=20a = 20, b=45b = 45, A=125\angle A = 125^\circ

Given A=125\angle A = 125^\circ, a=20a = 20, and b=45b = 45.

Step 1: Calculate B\angle B using the Law of Sines

The Law of Sines formula is: asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B} Substitute the known values: 20sin125=45sinB\frac{20}{\sin 125^\circ} = \frac{45}{\sin B} Calculate sin125\sin 125^\circ: sin1250.8192\sin 125^\circ \approx 0.8192 So, 200.819245sinB\frac{20}{0.8192} \approx \frac{45}{\sin B} sinB450.8192201.8432\sin B \approx \frac{45 \cdot 0.8192}{20} \approx 1.8432 Since sinB\sin B exceeds 1, no valid solution exists for B\angle B. Therefore, there is no possible triangle that satisfies these conditions.

Case (b): a=75a = 75, b=100b = 100, A=30\angle A = 30^\circ

Given A=30\angle A = 30^\circ, a=75a = 75, and b=100b = 100.

Step 1: Calculate B\angle B using the Law of Sines

Again, using the Law of Sines: asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B} Substitute the values: 75sin30=100sinB\frac{75}{\sin 30^\circ} = \frac{100}{\sin B} Calculate sin30=0.5\sin 30^\circ = 0.5: 750.5=100sinB\frac{75}{0.5} = \frac{100}{\sin B} 150=100sinB150 = \frac{100}{\sin B} sinB=1001500.6667\sin B = \frac{100}{150} \approx 0.6667 Now, we can find B\angle B: Barcsin(0.6667)41.8\angle B \approx \arcsin(0.6667) \approx 41.8^\circ

Step 2: Calculate C\angle C

Since the sum of angles in a triangle is 180180^\circ: C=180AB\angle C = 180^\circ - \angle A - \angle B C1803041.8108.2\angle C \approx 180^\circ - 30^\circ - 41.8^\circ \approx 108.2^\circ

Step 3: Find side cc using the Law of Sines

asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C} 750.5=csin108.2\frac{75}{0.5} = \frac{c}{\sin 108.2^\circ} Calculate sin108.20.9511\sin 108.2^\circ \approx 0.9511: 150=c0.9511150 = \frac{c}{0.9511} c1500.9511142.7c \approx 150 \cdot 0.9511 \approx 142.7

Summary of Solution for Case (b)

  • B41.8\angle B \approx 41.8^\circ
  • C108.2\angle C \approx 108.2^\circ
  • c142.7c \approx 142.7

There is only one solution for Case (b) as it forms a valid triangle.


Would you like further details on any part of this process?

Related Questions

  1. How does the Law of Sines apply to obtuse triangles specifically?
  2. What alternative methods can solve triangles when the Law of Sines fails?
  3. How does the Law of Cosines compare when solving for missing angles and sides?
  4. In what cases does the Law of Sines provide two possible triangles (ambiguous case)?
  5. How can one verify the triangle inequality in such problems?

Tip

Always check the range of the sine function when applying the Law of Sines to avoid impossible triangle scenarios.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Law of Sines
Triangle Properties

Formulas

Law of Sines: a/sin(A) = b/sin(B) = c/sin(C)

Theorems

Law of Sines
Triangle Angle Sum Theorem

Suitable Grade Level

Grades 10-12