Math Problem Statement

Solve triangle ABC. (If an answer does not exist, enter DNE. Round your answers to one decimal place.)

b = 60,    c = 38,    ∠A = 78°

Solution

To solve triangle ABCABC, where:

  • b=60b = 60
  • c=38c = 38
  • A=78\angle A = 78^\circ

We can apply the Law of Cosines and Law of Sines.

Step 1: Use the Law of Cosines to find aa

The Law of Cosines states that:

a2=b2+c22bccos(A)a^2 = b^2 + c^2 - 2bc \cdot \cos(\angle A)

Substitute the known values:

a2=602+38226038cos(78)a^2 = 60^2 + 38^2 - 2 \cdot 60 \cdot 38 \cdot \cos(78^\circ)

First, calculate the cosine of 78°:

cos(78)0.2079\cos(78^\circ) \approx 0.2079

Now substitute this value:

a2=3600+1444260380.2079a^2 = 3600 + 1444 - 2 \cdot 60 \cdot 38 \cdot 0.2079

a2=50441493.416a^2 = 5044 - 1493.416

a23549.584a^2 \approx 3549.584

Now, take the square root of both sides:

a3549.58459.6a \approx \sqrt{3549.584} \approx 59.6

So, a59.6a \approx 59.6.

Step 2: Use the Law of Sines to find B\angle B

The Law of Sines states:

asin(A)=bsin(B)\frac{a}{\sin(\angle A)} = \frac{b}{\sin(\angle B)}

We already know aa, bb, and A\angle A, so we can solve for B\angle B:

59.6sin(78)=60sin(B)\frac{59.6}{\sin(78^\circ)} = \frac{60}{\sin(\angle B)}

First, calculate sin(78)\sin(78^\circ):

sin(78)0.9781\sin(78^\circ) \approx 0.9781

Now substitute:

59.60.9781=60sin(B)\frac{59.6}{0.9781} = \frac{60}{\sin(\angle B)}

60.960sin(B)60.9 \approx \frac{60}{\sin(\angle B)}

Now solve for sin(B)\sin(\angle B):

sin(B)6060.90.9852\sin(\angle B) \approx \frac{60}{60.9} \approx 0.9852

So, Bsin1(0.9852)81.7\angle B \approx \sin^{-1}(0.9852) \approx 81.7^\circ.

Step 3: Find C\angle C

Since the sum of the angles in a triangle is 180°, we can find C\angle C:

C=180AB\angle C = 180^\circ - \angle A - \angle B

C=1807881.7\angle C = 180^\circ - 78^\circ - 81.7^\circ

C20.3\angle C \approx 20.3^\circ

Final Answers:

  • a59.6a \approx 59.6
  • B81.7\angle B \approx 81.7^\circ
  • C20.3\angle C \approx 20.3^\circ

Let me know if you need further details!


Related Questions:

  1. How do the Law of Cosines and Law of Sines differ in use?
  2. What are the conditions for applying the Law of Cosines in a triangle?
  3. What would happen if the triangle had an obtuse angle?
  4. Can the Law of Sines always be used to find all angles?
  5. How can you verify the angles in a triangle?

Tip: Remember to always check that the angles in a triangle add up to 180°, as it’s a key property of all triangles!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Law of Cosines
Law of Sines

Formulas

Law of Cosines: a^2 = b^2 + c^2 - 2bc * cos(∠A)
Law of Sines: (a / sin(∠A)) = (b / sin(∠B))

Theorems

Law of Cosines
Law of Sines

Suitable Grade Level

Grades 9-12