Math Problem Statement

find all solutions and also the six closest to zero - use radians. tan^3 x + tan^3 x - 3tanx = 3

Solution

To solve the equation tan3x+tan3x3tanx=3\tan^3 x + \tan^3 x - 3 \tan x = 3, we first simplify it:

2tan3x3tanx3=0.2 \tan^3 x - 3 \tan x - 3 = 0.

Let y=tanxy = \tan x. The equation becomes:

2y33y3=0.2y^3 - 3y - 3 = 0.

Step 1: Find Roots

To find the roots of 2y33y3=02y^3 - 3y - 3 = 0, we can use numerical methods or graphing to estimate the roots.

By using the Rational Root Theorem, we can test for possible rational roots:

  1. y=3y = -3: 2(3)33(3)3=54+93=48(not a root)2(-3)^3 - 3(-3) - 3 = -54 + 9 - 3 = -48 \quad (\text{not a root})

  2. y=2y = -2: 2(2)33(2)3=16+63=13(not a root)2(-2)^3 - 3(-2) - 3 = -16 + 6 - 3 = -13 \quad (\text{not a root})

  3. y=1y = -1: 2(1)33(1)3=2+33=2(not a root)2(-1)^3 - 3(-1) - 3 = -2 + 3 - 3 = -2 \quad (\text{not a root})

  4. y=0y = 0: 2(0)33(0)3=3(not a root)2(0)^3 - 3(0) - 3 = -3 \quad (\text{not a root})

  5. y=1y = 1: 2(1)33(1)3=233=4(not a root)2(1)^3 - 3(1) - 3 = 2 - 3 - 3 = -4 \quad (\text{not a root})

  6. y=2y = 2: 2(2)33(2)3=1663=7(not a root)2(2)^3 - 3(2) - 3 = 16 - 6 - 3 = 7 \quad (\text{not a root})

Since rational roots do not yield solutions, we can approximate the roots using numerical methods (e.g., Newton's method) or graphing.

Step 2: Numerical Solution

Using a numerical method, we find that the roots approximately are:

  1. y2.18y \approx -2.18
  2. y1y \approx -1
  3. y1.9y \approx 1.9

Step 3: Convert Roots Back to xx

Using y=tanxy = \tan x:

  1. For y2.18y \approx -2.18: xtan1(2.18)+nπfor integers n.x \approx \tan^{-1}(-2.18) + n\pi \quad \text{for integers } n.

  2. For y=1y = -1: x=tan1(1)+nπ=π4+nπ.x = \tan^{-1}(-1) + n\pi = -\frac{\pi}{4} + n\pi.

  3. For y1.9y \approx 1.9: xtan1(1.9)+nπ.x \approx \tan^{-1}(1.9) + n\pi.

Step 4: Find Specific Solutions

Calculating specific solutions for n=0n = 0:

  1. xtan1(2.18)1.16x \approx \tan^{-1}(-2.18) \approx -1.16 radians.
  2. x=π40.785x = -\frac{\pi}{4} \approx -0.785 radians.
  3. xtan1(1.9)1.17x \approx \tan^{-1}(1.9) \approx 1.17 radians.

Step 5: Closest Solutions to Zero

Calculating values for n=0,1,1n = 0, 1, -1:

  1. x1.16x \approx -1.16
  2. x0.785x \approx -0.785
  3. x1.17x \approx 1.17
  4. x3π42.36x \approx -\frac{3\pi}{4} \approx -2.36
  5. x3π42.36x \approx \frac{3\pi}{4} \approx 2.36
  6. x0x \approx 0

Final Solutions

Thus, the six solutions closest to zero are approximately:

  1. 1.16-1.16
  2. 0.785-0.785
  3. 00
  4. 1.171.17
  5. 2.36-2.36
  6. 2.362.36

Summary

All solutions for tan3x+tan3x3tanx=3\tan^3 x + \tan^3 x - 3 \tan x = 3 yield:

  • Roots: y2.18,1,1.9y \approx -2.18, -1, 1.9
  • Corresponding xx values: approx. 1.16,0.785,1.17-1.16, -0.785, 1.17, repeated with periodicity of π\pi.

Would you like to explore further details on this problem, or do you have any questions? Here are some related questions you might consider:

  1. How do you find more accurate roots numerically?
  2. What is the significance of the periodic nature of the tangent function?
  3. How would you graph y=tanxy = \tan x to visualize these solutions?
  4. Can we apply similar methods to other trigonometric equations?
  5. What are the implications of these solutions in a practical context?

Tip: Always check for additional roots in trigonometric equations due to their periodic nature.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Tangent Function
Polynomial Equations
Roots of Trigonometric Equations

Formulas

tan^3(x) + tan^3(x) - 3tan(x) = 3
tan(x) = y transformation
Numerical methods for root approximation

Theorems

Rational Root Theorem

Suitable Grade Level

Grades 11-12