Math Problem Statement

Consider the following two systems: (a) -6x - 4y = 3 and -2x + y = -1, (b) -6x - 4y = 2 and -2x + y = 3. Find the inverse of the common coefficient matrix of the two systems. Use the inverse to solve each system for x and y.

Solution

To solve this problem, let’s go through each part step-by-step.

Step 1: Set Up the Coefficient Matrix

For both systems, the coefficient matrix AA is: A=[6421]A = \begin{bmatrix} -6 & -4 \\ -2 & 1 \end{bmatrix}

Step 2: Find the Inverse of AA

The inverse of a 2×22 \times 2 matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} is given by: A1=1adbc[dbca]A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}

For our matrix:

  • a=6a = -6
  • b=4b = -4
  • c=2c = -2
  • d=1d = 1

Now, calculate the determinant: adbc=(6)(1)(4)(2)=68=14ad - bc = (-6)(1) - (-4)(-2) = -6 - 8 = -14

Then, the inverse matrix A1A^{-1} is: A1=114[1426]=[114414214614]=[114271737]A^{-1} = \frac{1}{-14} \begin{bmatrix} 1 & 4 \\ 2 & -6 \end{bmatrix} = \begin{bmatrix} -\frac{1}{14} & -\frac{4}{14} \\ -\frac{2}{14} & \frac{6}{14} \end{bmatrix} = \begin{bmatrix} -\frac{1}{14} & -\frac{2}{7} \\ -\frac{1}{7} & \frac{3}{7} \end{bmatrix}

Step 3: Solve for Each System Using A1A^{-1}

We now use A1A^{-1} to solve for the solutions by multiplying A1A^{-1} with b\mathbf{b}, where b\mathbf{b} represents the right-hand side of each system.

System (a):

For system (a), b=[31]\mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.

Calculate A1bA^{-1} \mathbf{b}: A1b=[114271737][31]A^{-1} \mathbf{b} = \begin{bmatrix} -\frac{1}{14} & -\frac{2}{7} \\ -\frac{1}{7} & \frac{3}{7} \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix}

Perform the matrix multiplication: x=1143+27(1)=314+27=314+414=114x = -\frac{1}{14} \cdot 3 + -\frac{2}{7} \cdot (-1) = -\frac{3}{14} + \frac{2}{7} = -\frac{3}{14} + \frac{4}{14} = \frac{1}{14} y=173+37(1)=3737=67y = -\frac{1}{7} \cdot 3 + \frac{3}{7} \cdot (-1) = -\frac{3}{7} - \frac{3}{7} = -\frac{6}{7}

So, for system (a), x=114x = \frac{1}{14} and y=67y = -\frac{6}{7}.

System (b):

For system (b), b=[23]\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.

Calculate A1bA^{-1} \mathbf{b}: A1b=[114271737][23]A^{-1} \mathbf{b} = \begin{bmatrix} -\frac{1}{14} & -\frac{2}{7} \\ -\frac{1}{7} & \frac{3}{7} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}

Perform the matrix multiplication: x=1142+273=21467=2141214=1414=1x = -\frac{1}{14} \cdot 2 + -\frac{2}{7} \cdot 3 = -\frac{2}{14} - \frac{6}{7} = -\frac{2}{14} - \frac{12}{14} = -\frac{14}{14} = -1 y=172+373=27+97=77=1y = -\frac{1}{7} \cdot 2 + \frac{3}{7} \cdot 3 = -\frac{2}{7} + \frac{9}{7} = \frac{7}{7} = 1

So, for system (b), x=1x = -1 and y=1y = 1.

Summary of Solutions

  • Inverse Matrix A1A^{-1}: A1=[114271737]A^{-1} = \begin{bmatrix} -\frac{1}{14} & -\frac{2}{7} \\ -\frac{1}{7} & \frac{3}{7} \end{bmatrix}

  • Solutions:

    • For system (a): x=114x = \frac{1}{14}, y=67y = -\frac{6}{7}
    • For system (b): x=1x = -1, y=1y = 1

Would you like a further breakdown or have any questions on these steps?


Here are 5 related questions for further exploration:

  1. How would you verify the solution by substituting xx and yy back into the original equations?
  2. What would happen if the determinant of AA were zero?
  3. How would you approach finding the inverse of a 3×33 \times 3 matrix?
  4. Can a matrix with fractional entries have an integer solution?
  5. How could Gaussian elimination be used to solve this system instead of using the matrix inverse?

Tip: Always check the determinant of a matrix before trying to find its inverse; if the determinant is zero, the matrix is singular and has no inverse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Inversion
Systems of Linear Equations

Formulas

Inverse of 2x2 matrix: A^{-1} = (1 / (ad - bc)) * [[d, -b], [-c, a]]
Matrix multiplication for solution: x = A^{-1} * b

Theorems

Matrix Inverse Theorem
Determinants

Suitable Grade Level

College-level Linear Algebra or Advanced High School Math