Math Problem Statement

Solve the equation \(\sqrt{3 - x} - \sqrt{7 + x} = \sqrt{16 + 2x}\).

Solution

The equation provided in the image is:

3x7+x=16+2x\sqrt{3 - x} - \sqrt{7 + x} = \sqrt{16 + 2x}

To solve this equation, we'll proceed step by step.

Step 1: Isolate one of the square roots

First, let's try to isolate one of the square roots. We can start by isolating 16+2x\sqrt{16 + 2x}:

3x7+x=16+2x\sqrt{3 - x} - \sqrt{7 + x} = \sqrt{16 + 2x}

Add 7+x\sqrt{7 + x} to both sides:

3x=7+x+16+2x\sqrt{3 - x} = \sqrt{7 + x} + \sqrt{16 + 2x}

Step 2: Square both sides

Next, square both sides of the equation to eliminate the square roots:

(3x)2=(7+x+16+2x)2(\sqrt{3 - x})^2 = (\sqrt{7 + x} + \sqrt{16 + 2x})^2

On the left side:

3x3 - x

On the right side, use the identity (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:

7+x+16+2x+2(7+x)(16+2x)7 + x + 16 + 2x + 2\sqrt{(7 + x)(16 + 2x)}

Simplifying:

3x=23+3x+2(7+x)(16+2x)3 - x = 23 + 3x + 2\sqrt{(7 + x)(16 + 2x)}

Step 3: Isolate the square root again

Now, isolate the square root term:

3x233x=2(7+x)(16+2x)3 - x - 23 - 3x = 2\sqrt{(7 + x)(16 + 2x)}

Simplify:

4x20=2(7+x)(16+2x)-4x - 20 = 2\sqrt{(7 + x)(16 + 2x)}

Divide by 2:

2x10=(7+x)(16+2x)-2x - 10 = \sqrt{(7 + x)(16 + 2x)}

Step 4: Square both sides again

Square both sides again:

(2x10)2=(7+x)(16+2x)(-2x - 10)^2 = (7 + x)(16 + 2x)

Expand both sides:

4x2+40x+100=112+30x+2x24x^2 + 40x + 100 = 112 + 30x + 2x^2

Step 5: Simplify and solve the quadratic equation

Move all terms to one side:

4x2+40x+10011230x2x2=04x^2 + 40x + 100 - 112 - 30x - 2x^2 = 0

Simplify:

2x2+10x12=02x^2 + 10x - 12 = 0

Divide by 2:

x2+5x6=0x^2 + 5x - 6 = 0

Factor the quadratic:

(x+6)(x1)=0(x + 6)(x - 1) = 0

So, the solutions are:

x=6orx=1x = -6 \quad \text{or} \quad x = 1

Step 6: Verify the solutions

We need to check both potential solutions in the original equation.

For x=6x = -6:

3(6)7+(6)=16+2(6)\sqrt{3 - (-6)} - \sqrt{7 + (-6)} = \sqrt{16 + 2(-6)}

91=4\sqrt{9} - \sqrt{1} = \sqrt{4}

31=2which is true3 - 1 = 2 \quad \text{which is true}

For x=1x = 1:

[ \sqrt{3 -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Square Roots
Quadratic Equations

Formulas

Quadratic equation formula: \(ax^2 + bx + c = 0\)
Square of binomial: \((a + b)^2 = a^2 + 2ab + b^2\)

Theorems

Quadratic formula

Suitable Grade Level

Grades 10-12